
Graph Theory
Graph theory helps in solving real-world problems efficiently, making it essential

in technology and science

Kabui, Charles

2025-03-31

Table of Contents

Introduction . 1
Applications . 3

Question 1: Shortest Path in a Road Network (Dijkstra’s Algorithm) 3
Answer . 4

Question 2: Influence Analysis in a Social Network (PageRank Algorithm) . 5
Answer . 5

Question 3: Maximum Flow in a Water Distribution System (Ford-Fulkerson
Algorithm) . 6
Answer . 6

Read at ToKnow.ai Open in Kaggle Download as Notebook

Introduction

Graph theory is the study of networks of connected objects. A graph consists of nodes
(vertices) and edges (connections). If edges have a direction, it’s a directed graph
(digraph); otherwise, it’s undirected.

Why is Graph Theory Important?

1

https://toknow.ai/posts/computational-techniques-in-data-science/graph-theory/index.html
https://kaggle.com/kernels/welcome?src=https://toknow.ai/posts/computational-techniques-in-data-science/graph-theory/index.output.ipynb
https://toknow.ai/posts/computational-techniques-in-data-science/graph-theory/index.output.ipynb

1. Navigation & Routing - Used in GPS systems, internet routing, and traffic optimiza-
tion.

2. Social Networks - Helps analyze connections and influence, like in Facebook or Twitter.

3. Data Relationships - Useful in databases, recommendation systems (Netflix, Amazon),
and web linking (Google’s PageRank).

4. Biology & Chemistry - Helps model DNA structures, chemical compounds, and
disease spread.

5. Artificial Intelligence - Used in neural networks, decision trees, and search algorithms.

6. Project Management - Critical path analysis in workflows and task dependencies.

import networkx as nx
import matplotlib.pyplot as plt

Create a directed graph
G = nx.DiGraph()

Add edges (connections)
edges = [

("A", "B"),
("A", "C"),
("B", "D"),
("C", "D"),
("D", "E")

]
G.add_edges_from(edges)

Draw the graph
plt.figure(figsize=(5, 5))
nx.draw(

G,
with_labels=True,
node_color="skyblue",
edge_color="black",
arrows=True,
node_size=2000,
font_size=12)

plt.title("Graph Theory - Simple Directed Graph")
plt.show()

2

Applications

Question 1: Shortest Path in a Road Network (Dijkstra’s Algorithm)

A logistics company called Home Logistics wants to determine the most efficient route between
two cities in a given road network. The network is represented as a graph where cities are
nodes and roads are edges with weights corresponding to the travel distance (in kilometers).

Given the following graph representation of a road network, write a Python program using
Dijkstra’s Algorithm to find the shortest path from City A to City F.

3

Graph Data (as adjacency list):

roads = {
'A': {'B': 4, 'C': 2},
'B': {'A': 4, 'C': 5, 'D': 10},
'C': {'A': 2, 'B': 5, 'D': 3, 'E': 8},
'D': {'B': 10, 'C': 3, 'E': 6, 'F': 2},
'E': {'C': 8, 'D': 6, 'F': 4},
'F': {'D': 2, 'E': 4}

}

Answer

Create graph
G = nx.Graph()
edges = [

("A", "B", 4),
("A", "C", 2),
("B", "C", 5),
("B", "D", 10),
("C", "D", 3),
("C", "E", 8),
("D", "E", 6),
("D", "F", 2),
("E", "F", 4)

]
G.add_weighted_edges_from(edges)

Compute shortest path from A to F
path = nx.shortest_path(

G,
source="A",
target="F",
weight="weight")

distance = nx.shortest_path_length(
G,
source="A",
target="F",
weight="weight")

print("Shortest Path:", path)
print("Total Distance:", distance, "km")

4

Shortest Path: ['A', 'C', 'D', 'F']
Total Distance: 7 km

Question 2: Influence Analysis in a Social Network (PageRank Algorithm)

A social media platform wants to identify the most influential users based on follower relation-
ships. The network is represented as a directed graph, where each user is a node, and an edge
from user A to user B means that A follows B. Given the following directed graph of follower
relationships, implement a Python program using the PageRank algorithm to rank users by
influence.

Graph Representation:

followers = {
'Alice': ['Bob', 'Charlie'],
'Bob': ['Charlie', 'David'],
'Charlie': ['David'],
'David': ['Alice'],
'Eve': ['Alice', 'Charlie']

}

Compute the PageRank scores and determine the most influential user.

Answer

Create directed graph
G = nx.DiGraph()
Graph representation
followers = {

'Alice': ['Bob', 'Charlie'],
'Bob': ['Charlie', 'David'],
'Charlie': ['David'],
'David': ['Alice'],
'Eve': ['Alice', 'Charlie']

}
for user, following in followers.items():

G.add_edges_from((user, f) for f in following)

Compute PageRank
pagerank_scores = nx.pagerank(G)
print("User Rankings (Most Influential First):")

5

sort by PageRank score
sorted(pagerank_scores.items(), key=lambda x: x[1], reverse=True)

User Rankings (Most Influential First):

[('David', 0.2926192854405204),
('Alice', 0.2914779704710639),
('Charlie', 0.23202522727386252),
('Bob', 0.15387751681455353),
('Eve', 0.030000000000000006)]

Question 3: Maximum Flow in a Water Distribution System (Ford-Fulkerson Algorithm)

A city’s water supply system consists of reservoirs, pipelines, and distribution points. The
system is represented as a directed graph, where nodes represent junctions (reservoirs or city
areas) and edges represent water pipelines with capacity limits. Given the following network,
where the source is S (reservoir) and the sink is T (city distribution center), use the Ford-
Fulkerson algorithm to determine the maximum amount of water that can be transported to
the city.

Graph Representation (with capacities):

water_network = {
'S': {'A': 16, 'B': 13},
'A': {'B': 10, 'C': 12},
'B': {'D': 14},
'C': {'B': 9, 'T': 20},
'D': {'C': 7, 'T': 4},
'T': {}

}

Write a Python program to compute the maximum flow from S to T.

Answer

Create directed graph with capacities
G = nx.DiGraph()
edges = [

("S", "A", 16),
("S", "B", 13),

6

("A", "B", 10),
("A", "C", 12),
("B", "D", 14),
("C", "B", 9),
("C", "T", 20),
("D", "C", 7),
("D", "T", 4)

]
G.add_weighted_edges_from(

edges,
weight="capacity")

Compute max flow from S to T
flow_value, flow_dict = nx.maximum_flow(G, "S", "T")
print("Maximum Flow:", flow_value, "units")

Maximum Flow: 23 units

Disclaimer: For information only. Accuracy or completeness not guaranteed. Illegal use prohibited. Not professional
advice or solicitation. Read more: /terms-of-service

7

https://toknow.ai/terms-of-service

	Introduction
	Applications
	Question 1: Shortest Path in a Road Network (Dijkstra's Algorithm)
	Answer

	Question 2: Influence Analysis in a Social Network (PageRank Algorithm)
	Answer

	Question 3: Maximum Flow in a Water Distribution System (Ford-Fulkerson Algorithm)
	Answer

