Stochastic: Steady-State Probability, Markov

Chains and Network Visualization
Understanding Markov Chains: Why They Matter in Data Science

Kabui, Charles
2025-04-14

Table of Contents

Steady-State Probability Calculation oL
Tasks: e e
Answer . .. oL

Represent the matrix in Python using NumPy
Verify if this matrix is a valid stochastic matrix
Compute the steady-state probabilities analytically using Python

Markov Chain Simulation and Visualization
Tasks:
ANSWEr e

Simulate the Markov chain for 50 time steps starting from state 0

Count how many times each state was visited
Plot the sequence of visited states over time using matplotlib
Visualize the frequency distribution of states visited using a bar plot . .

Network Visualization of State Transitions
Tasks: e
Answer ...

Create a directed graph using networkx
Draw the graph using matplotlib with edge labels and thickness

& Read at TOKIIOW.ai] [k Open in Kagglc] [ﬁ Download as Notebook

CO 00 OO N O UL UL s i i W WD NN

https://toknow.ai/posts/computational-techniques-in-data-science/stochastic_steady-state-probability_markov-chains_network-visualization/index.html
https://kaggle.com/kernels/welcome?src=https://toknow.ai/posts/computational-techniques-in-data-science/stochastic_steady-state-probability_markov-chains_network-visualization/index.output.ipynb
https://toknow.ai/posts/computational-techniques-in-data-science/stochastic_steady-state-probability_markov-chains_network-visualization/index.output.ipynb

In the world of data science, systems often evolve over time in ways that depend only on their
current state - not their entire history. This concept is at the heart of Markov chains, a
powerful mathematical tool for modeling sequences of events where the next state depends only
on the current one. Whether you’re analyzing user behavior on a website, modeling weather
patterns, simulating queues, or building recommender systems, Markov chains offer an elegant
and effective way to understand and predict dynamic systems.

At their core, Markov chains rely on transition matrices that define the probability of
moving from one state to another. By analyzing these matrices, data scientists can compute
steady-state probabilities - a long-term distribution of where the system is likely to be.
Simulating these chains also allows us to observe patterns over time and visualize how the
system behaves dynamically.

Steady-State Probability Calculation

You are given the following 3x3 transition matrix representing the state changes of a system

over time:

P =

0.7 0.2 0.1
0.3 0.4 0.3
0.3 0.2 0.5
]

Tasks:

1. Represent the matrix in Python using NumPy.
2. Verify if this matrix is a valid stochastic matrix.

3. Compute the steady-state probabilities analytically using Python.

Answer

Represent the matrix in Python using NumPy
import numpy as np

P = np.array([

(0.7, 0.2, 0.1],
[0.3, 0.4, 0.3],

[0.3, 0.2, 0.5]
D
P

array([[0.7, 0.2, 0.1],
[0.3, 0.4, 0.3],
[0.3, 0.2, 0.5]1)

Verify if this matrix is a valid stochastic matrix
A stochastic matrix has non-negative entries and each row sums to 1.

Check non-negativity
is_non_negative = np.all(P >= 0)

Check if each row sums to 1
row_sums = np.sum(P, axis=1)
rows_sum_to_one = np.allclose(row_sums, 1)

is_valid_stochastic = is_non_negative and rows_sum_to_one
print("Valid stochastic matrix:", is_valid_stochastic)

Valid stochastic matrix: True

Compute the steady-state probabilities analytically using Python

Solve for such that P = and sum() = 1

Solve for steady-state vector
= P.T - np.eye(3)
np.vstack((A, np.ones(3)))
np.array([0, 0, 0, 1])

T = = #®
I

steady_state = np.linalg.lstsq(A, b, rcond=None) [0]
print("Steady-state probabilities:", steady_state)

Steady-state probabilities: [0.5 0.25 0.25]

Verify P =

steady_state

array([0.5 , 0.25, 0.25])
np.array_equal (

np.round(np.dot(steady_state, P), 2),
np.round(steady_state, 2))

True

Markov Chain Simulation and Visualization

Using the same transition matrix P in question One, simulate a Markov chain for 50 time
steps, starting from state 0.

Tasks:
1. Simulate the Markov chain and record the state at each time step.
2. Count how many times each state was visited.
3. Plot the sequence of visited states over time using matplotlib.

4. Visualize the frequency distribution of states visited using a bar plot.

Answer

Simulate the Markov chain for 50 time steps starting from state 0

def simulate_markov_chain(P, start_state, steps):
current_state = start_state
states = [current_state]

for _ in range(steps):
current_state = np.random.choice(P.shape[0], p=P[current_state])
states.append(int (current_state))

return states

simulated_states = simulate_markov_chain(P, start_state=0, steps=50)

Count how many times each state was visited

from collections import Counter
import pandas as pd

state_counts = dict(Counter(simulated_states))
pd.DataFrame ({

"state": state_counts.keys(),

"visit count": state_counts.values()
}) .set_index("state")

visit count

state

0 26
1 17
2 8

Plot the sequence of visited states over time using matplotlib
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 4))
plt.plot(simulated_states, marker='o')
plt.title("Visited States Over Time")
plt.xlabel("Time Step")
plt.ylabel("State")

plt.grid(True)

plt.show()

Visited States Over Time

2.00 A L 4

L.75

1.50 ~

1.25 ~

1.00 -

State

0.75 A

0.50

0.25
0.00 L.-.-l

Time Step

Visualize the frequency distribution of states visited using a bar plot

plt.figure(figsize=(6, 4))

plt.bar(state_counts.keys(), state_counts.values(), color='skyblue')
plt.title("State Visit Frequency")

plt.xlabel("State")

plt.ylabel ("Frequency")

plt.xticks([0, 1, 2])

plt.grid(True, axis='y')

plt.show()

State Visit Frequency

25

20 +

Frequency
=
un

i

=
o
I

State

Network Visualization of State Transitions

Using the transition matrix P in question One again, create a directed graph of the Markov
chain.

Tasks:

1. Use networkx to create a directed graph where:

o Nodes represent the states (0, 1, 2).

o FEdges represent transitions with weights corresponding to transition probabilities.

2. Draw the graph using matplotlib.

3. Use edge thickness or labels to indicate the strength of the transition probabilities.

Answer

Create a directed graph using networkx

import networkx as nx
G = nx.DiGraph()

Add nodes and edges with weights
for i in range(P.shape[0]):
for j in range(P.shape[0]):
if P[i, j] > O:
G.add_edge(i, j, weight=P[i, jI)

Draw the graph using matplotlib with edge labels and thickness

pos = nx.circular_layout(G)
edge_weights = [
G[lul [vl['weight'] * 5
for u, v
in G.edges()

]
plt.figure(figsize=(6, 6))
nx.draw(

G,

pos,

with_labels=True,
node_color='lightgreen',
node_size=1500,
edge_color='gray',
width=edge_weights,
arrowsize=20)

Add edge labels
edge_labels = {
(u, v): £"{d['weight']:.2f}"
for u, v, d
in G.edges(data=True)
3
nx.draw_networkx_edge_labels(
G,

pos,
edge_labels=edge_labels)

plt.title("Markov Chain Transition Graph")

plt.show()
Markov Chain Transition Graph
0.40
()
1
A
039
‘n.?n
¥ 0
o
03°
0.50
()
2

Disclaimer: For information only. Accuracy or completeness not guaranteed. Illegal use prohibited. Not professional
advice or solicitation. Read more: /terms-of-service

10

https://toknow.ai/terms-of-service

	Steady-State Probability Calculation
	Tasks:
	Answer
	Represent the matrix in Python using NumPy
	Verify if this matrix is a valid stochastic matrix
	Compute the steady-state probabilities analytically using Python

	Markov Chain Simulation and Visualization
	Tasks:
	Answer
	Simulate the Markov chain for 50 time steps starting from state 0
	Count how many times each state was visited
	Plot the sequence of visited states over time using matplotlib
	Visualize the frequency distribution of states visited using a bar plot

	Network Visualization of State Transitions
	Tasks:
	Answer
	Create a directed graph using networkx
	Draw the graph using matplotlib with edge labels and thickness

