Stochastic: Steady-State Probability, Markov Chains and Network Visualization

Understanding Markov Chains: Why They Matter in Data Science

Kabui, Charles

2025-04-14

Table of Contents

Steady-State Probability Calculation	2
Tasks:	2
Answer	2
Represent the matrix in Python using NumPy	2
Verify if this matrix is a valid stochastic matrix	3
Compute the steady-state probabilities analytically using Python \ldots 3	3
Markov Chain Simulation and Visualization	1
Tasks:	1
Answer \ldots \ldots \ldots 4	1
Simulate the Markov chain for 50 time steps starting from state 0 \ldots 4	1
Count how many times each state was visited $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 5$	5
Plot the sequence of visited states over time using matplotlib 5	5
Visualize the frequency distribution of states visited using a bar plot 6	3
Network Visualization of State Transitions	7
Tasks:	7
Answer	3
Create a directed graph using networkx	3
Draw the graph using matplotlib with edge labels and thickness 8	3

S Read at <u>ToKnow</u>.ai

k Open in Kaggle

Download as Notebook

In the world of data science, systems often evolve over time in ways that depend only on their current state - not their entire history. This concept is at the heart of **Markov chains**, a powerful mathematical tool for modeling sequences of events where the next state depends only on the current one. Whether you're analyzing user behavior on a website, modeling weather patterns, simulating queues, or building recommender systems, Markov chains offer an elegant and effective way to understand and predict dynamic systems.

At their core, Markov chains rely on **transition matrices** that define the probability of moving from one state to another. By analyzing these matrices, data scientists can compute **steady-state probabilities** - a long-term distribution of where the system is likely to be. Simulating these chains also allows us to observe patterns over time and visualize how the system behaves dynamically.

Steady-State Probability Calculation

You are given the following 3×3 transition matrix representing the state changes of a system over time:

```
P = [
0.7 0.2 0.1
0.3 0.4 0.3
0.3 0.2 0.5
]
```

Tasks:

- 1. Represent the matrix in Python using NumPy.
- 2. Verify if this matrix is a valid stochastic matrix.
- 3. Compute the steady-state probabilities analytically using Python.

Answer

Represent the matrix in Python using NumPy

```
import numpy as np
P = np.array([
    [0.7, 0.2, 0.1],
    [0.3, 0.4, 0.3],
```

[0.3, 0.2, 0.5]]) P

```
array([[0.7, 0.2, 0.1],
[0.3, 0.4, 0.3],
[0.3, 0.2, 0.5]])
```

Verify if this matrix is a valid stochastic matrix

A stochastic matrix has non-negative entries and each row sums to 1.

```
# Check non-negativity
is_non_negative = np.all(P >= 0)
# Check if each row sums to 1
row_sums = np.sum(P, axis=1)
rows_sum_to_one = np.allclose(row_sums, 1)
is_valid_stochastic = is_non_negative and rows_sum_to_one
print("Valid stochastic matrix:", is_valid_stochastic)
```

Valid stochastic matrix: True

Solve for such that P = and sum() = 1

Compute the steady-state probabilities analytically using Python

```
# Solve for steady-state vector
A = P.T - np.eye(3)
A = np.vstack((A, np.ones(3)))
b = np.array([0, 0, 0, 1])
steady_state = np.linalg.lstsq(A, b, rcond=None)[0]
print("Steady-state probabilities:", steady_state)
```

Steady-state probabilities: [0.5 0.25 0.25]

Verify P =

```
steady_state
```

```
array([0.5 , 0.25, 0.25])
np.array_equal(
    np.round(np.dot(steady_state, P), 2),
    np.round(steady_state, 2))
```

True

Markov Chain Simulation and Visualization

Using the same transition matrix \mathbf{P} in question One, simulate a Markov chain for **50 time steps**, starting from **state 0**.

Tasks:

- 1. Simulate the Markov chain and record the state at each time step.
- 2. Count how many times each state was visited.
- 3. Plot the sequence of visited states over time using matplotlib.
- 4. Visualize the frequency distribution of states visited using a bar plot.

Answer

Simulate the Markov chain for 50 time steps starting from state 0

```
def simulate_markov_chain(P, start_state, steps):
    current_state = start_state
    states = [current_state]
    for _ in range(steps):
        current_state = np.random.choice(P.shape[0], p=P[current_state])
        states.append(int(current_state))
    return states
```

```
simulated_states = simulate_markov_chain(P, start_state=0, steps=50)
```

Count how many times each state was visited

```
from collections import Counter
import pandas as pd
state_counts = dict(Counter(simulated_states))
pd.DataFrame({
    "state": state_counts.keys(),
    "visit count": state_counts.values()
}).set_index("state")
```

	visit count
state	
0	26
1	17
2	8

Plot the sequence of visited states over time using matplotlib

```
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 4))
plt.plot(simulated_states, marker='o')
plt.title("Visited States Over Time")
plt.xlabel("Time Step")
plt.ylabel("State")
plt.grid(True)
plt.show()
```


Visualize the frequency distribution of states visited using a bar plot

```
plt.figure(figsize=(6, 4))
plt.bar(state_counts.keys(), state_counts.values(), color='skyblue')
plt.title("State Visit Frequency")
plt.xlabel("State")
plt.ylabel("Frequency")
plt.xticks([0, 1, 2])
plt.grid(True, axis='y')
plt.show()
```


Network Visualization of State Transitions

Using the transition matrix ${\bf P}$ in question One again, create a directed graph of the Markov chain.

Tasks:

- 1. Use **networkx** to create a directed graph where:
 - Nodes represent the states (0, 1, 2).
 - Edges represent transitions with weights corresponding to transition probabilities.
- 2. Draw the graph using matplotlib.
- 3. Use edge thickness or labels to indicate the strength of the transition probabilities.

Answer

Create a directed graph using networkx

```
import networkx as nx
G = nx.DiGraph()
# Add nodes and edges with weights
for i in range(P.shape[0]):
    for j in range(P.shape[0]):
        if P[i, j] > 0:
            G.add_edge(i, j, weight=P[i, j])
```

Draw the graph using matplotlib with edge labels and thickness

```
pos = nx.circular_layout(G)
edge_weights = [
    G[u][v]['weight'] * 5
    for u, v
    in G.edges()
]
plt.figure(figsize=(6, 6))
nx.draw(
    G,
    pos,
    with_labels=True,
    node_color='lightgreen',
    node_size=1500,
    edge_color='gray',
    width=edge_weights,
    arrowsize=20)
# Add edge labels
edge_labels = {
    (u, v): f"{d['weight']:.2f}"
    for u, v, d
    in G.edges(data=True)
}
nx.draw_networkx_edge_labels(
   G,
```

```
pos,
edge_labels=edge_labels)
```

```
plt.title("Markov Chain Transition Graph")
plt.show()
```


Disclaimer: For information only. Accuracy or completeness not guaranteed. Illegal use prohibited. Not professional advice or solicitation. Read more: /terms-of-service