Free, Intelligent and Serverless Page
View/Read Count using Google Analytics and
Cloudflare Workers

Using Google Analytics to generate a SVG image of the Page Reader/View
Count through Cloudflare Workers

Kabui, Charles

2024-11-23
Table of Contents
Authenticating and Authorizing Google Analytics APIs 3
Google APIs Explorer 4
Python Example 8
Code e 8
Tests . . . o L e 12
Using Cloudflare Worker 13
Implementing Typescript Worker 13
Testing, Deployment and Troubleshooting Cloudflare Workers 20
Alternatives to Cloudflare 21

[(9 Read at TOKnow.ai] [k Open in Kaggle] [ﬁ Download as Notebook]

readers 1.4K

https://toknow.ai/posts/display-google-analytics-views-using-cloudflare-worker/index.html
https://kaggle.com/kernels/welcome?src=https://toknow.ai/posts/display-google-analytics-views-using-cloudflare-worker/index.output.ipynb
https://toknow.ai/posts/display-google-analytics-views-using-cloudflare-worker/index.output.ipynb

When you set up a website, blog, vlog, or social media post, you expect engagement. One of
the simplest and most effective ways to measure engagement is through views. View count is
effective because it measures both active and passive audience interaction. However, not all
views represent actual engagement. For example, if one user reloads the same page a thousand
times, it doesn’t represent a thousand unique viewers - it’s just one user refreshing repeatedly.
They may not have even read the content. On the other hand, when a user returns multiple
times to read content carefully, each visit could be considered meaningful engagement. To
calculate actual reads, we need some intelligence in our tracking.

In the case of a blog or website, one of the simplest ways to add some intelligence is to delay
sending the view or read signal by for example 7 seconds. Another way is to wait for the user
to scroll a page to about half the page before triggering a read count.

You could also employ a free external service such as https://visitorbadge.io, which receives
the page url and returns an SVG image of the page count, for example:

https://api.visitorbadge.io/api/visitors?path=nhttps: //toknow.ai/posts/display-google-
analytics-views-using-cloudflare-worker /index.html

One of the drawback of this strategy is we can’t delay the tigger of view count and show the
current views/reads at the same time.

Ofcourse, you can implement a backend service to save and read the views. However, for a
static websites and blogs such as this one (hosted as github pages), that would go aganist the
current architecture.

Another alternative would be to utilize Google analytics. Google analytics can be added not
just for the views, but to measure the overall health of the website/blog. If google analytics
is your primary analytics tool for your website/blog, why not just show the views they have
calculated?

To ensure we dont affect the current architecture, we can use a cloudflare worker to fetch views
from google analytics.

i Note

Google Analytics helps website and app owners track and analyze their website traffic.
It gives insights into how users interact with your website, such as which pages they
visit, how long they stay, and where they come from, demographics, page views, session
duration, and more. To set up Google Analytics, create a Google account, set up a
property for your website, and add the provided tracking code to your website’s HTML.
For a step-by-step guide on how to set up Google Analytics, read https:
//dev.to/codesphere /setting-up-google-analytics-on-your-static-website-47mn and
https://morotsman.github.io/blog, /google/analytics, /jekyll, /github/pages/2020/07/07/
add-google-analytics.html or watch the video below:

https://visitorbadge.io
https://api.visitorbadge.io/api/visitors?path=https://toknow.ai/posts/display-google-analytics-views-using-cloudflare-worker/index.html
https://api.visitorbadge.io/api/visitors?path=https://toknow.ai/posts/display-google-analytics-views-using-cloudflare-worker/index.html
https://developers.google.com/analytics
https://dev.to/codesphere/setting-up-google-analytics-on-your-static-website-47mn
https://dev.to/codesphere/setting-up-google-analytics-on-your-static-website-47mn
https://morotsman.github.io/blog,/google/analytics,/jekyll,/github/pages/2020/07/07/add-google-analytics.html
https://morotsman.github.io/blog,/google/analytics,/jekyll,/github/pages/2020/07/07/add-google-analytics.html

Click to watch the video at Youtube.

HOW TO SET UP

| GOOG!' E
ANALYT.__

TUTORIAL

Authenticating and Authorizing Google Analytics APls

1 Important

This assumes you already have Google Analytics setup and running on one of your web-
site/blog

For a detailed guide on how to create a service account, download the credentials. json file,
and connect the service account to the google analytics account, see https://developers.google.
com/analytics/devguides/reporting/data/v1/quickstart-client-libraries.

The credentials. json file has the following json structure:

{

"type": "service_account",
n n

Tprreject_dds T.,.7
"private_key_id": "s6sdfsdf876...sdf7ygsf78fsd",

https://www.youtube.com/embed/f3X-hYRxBL8
https://developers.google.com/analytics/devguides/reporting/data/v1/quickstart-client-libraries
https://developers.google.com/analytics/devguides/reporting/data/v1/quickstart-client-libraries

"private_key": "----- BEGIN PRIVATE KEY--——-- \n...\n----- END PRIVATE KEY----- \n",
"client_email": "starting-account...iam.gserviceaccount.com",

"client_id": "094534589...438598743",

"auth_uri": "https://accounts.google.com/o/oauth2/auth",

"token_uri": "https://oauth2.googleapis.com/token",

"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/vl/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/vl/metadata/x509/starting-accoun
"universe_domain": "googleapis.com"

To get the Google Analytics property identifier, see https://developers.google.com/analytics/
devguides/reporting/data/v1/property-id#what_is my_property id

We need both the Google Analytics property identifier (properties/232..132) and
credentials. json file to be able to fetch analytics data.

Google APIs Explorer

Google provides an APIs Explorer specifically for testing Google Analytics Data API calls.

https://developers.google.com/analytics/devguides/reporting/data/v1/property-id#what_is_my_property_id
https://developers.google.com/analytics/devguides/reporting/data/v1/property-id#what_is_my_property_id

Try this method
SURL JAVASCRIPT

Request parameters XG

property curl --request POST \

properties/465...623 'https://analyticsdata.googleapis.com/vlbeta/properties/465...623: runReport?key=[YOUR API
--header 'Authorization: Bearer [YOUR ACCESS TOKEN]' \

Show standard parameters v --header 'Accept: application/json’ \

--header 'Content-Type: application/json’ \

--data '{"dateRanges":[{"startDate":"2024-01-01","endDate":"2024-12-31"}],"dimensions": [{"
--compressed

Request body
v {
"dateRanges": [
{
“startDate": "2024-01-01",
“endDate": "2024-12-31"
°

o
]

“dimensions”: [ication/| Raw HTTP Response
{
"name": "pagePath"

° K
“"dimensionHeaders": [
° {
1 "name": "pagePath"

}

"dimensionFilter": {
*filter": {
“fieldName": "pagePath”,
“stringFilter": {
"matchType": "CONTAINS",
"value": "/posts/private-domain-checker”
° 1
¥ v “rows": [
° . {
¥ v "dimensionValues": [
° v {

1,
"metricHeaders": [
{
“name": "screenPageViews",
“type": "TYPE INTEGER"
}

Figure 1: Google Analytics API Explorer

Here’s how to use it:

o Visit: https://developers.google.com/analytics/devguides/reporting/data/v1/rest/
v1beta/properties/runReport

¢ Replace PROPERTY_ID with your actual Google Analytics 4 property ID, instructions here:
https://developers.google.com /analytics/devguides/reporting /data/v1 /property-id

o Use the following request body and update the dateRanges.startDate (for-
mat: YYYY-MM-DD), dateRanges.endDate (format: YYYY-MM-DD) and page path
(dimensionFilter.filter.stringFilter.value) whose views you want to get. The
startDate can be any old day, even older than the website and endDate can be any
future date.

{
"dateRanges": [
{
"startDate": "2024-01-01",
"endDate": "2024-12-31"

https://developers.google.com/analytics/devguides/reporting/data/v1/rest/v1beta/properties/runReport
https://developers.google.com/analytics/devguides/reporting/data/v1/rest/v1beta/properties/runReport
https://developers.google.com/analytics/devguides/reporting/data/v1/property-id

}

1,
"dimensions": [
{
"name": "pagePath"
b
15
"dimensionFilter": {
"filter": {
"fieldName": "pagePath",
"stringFilter": {
"matchType": "CONTAINS",
"value": "/posts/private-domain-checker"
}
b
15
"metrics": [
{
"name": "screenPageViews"
}
]

e Click the “Execute” button.

This will allow you to send a test POST request with your configured parameters and see the
response from the API, including any errors or the data you requested.

Success Response:

// HTTP/1.1 200

{
"dimensionHeaders": [
{
"name": "pagePath"
}
1
"metricHeaders": [
{
"name": "screenPageViews",
"type": "TYPE_INTEGER"
}
15

"rows": [

{
"dimensionValues": [
{
"value": "/posts/private-domain-checker/"
+
1,
"metricValues": [
{
"value": "82"
+
]
B
{
"dimensionValues": [
{
"value": "/posts/private-domain-checker/index.html"
+
1,
"metricValues": [
{
"value": "5"
}
]
},
{
"dimensionValues": [
{
"value": "/posts/private-domain-checker"
}
1,
"metricValues": [
{
"value": "2"
+
]

}

1,

"rowCount": 3,

"metadata": {
"currencyCode": "USD",
"timeZone": "Africa/Nairobi"

T,

"kind": "analyticsData#runReport"

Error Reponse:

// HTTP/1.1 400

{
"error": {
"code": 400,
"message": "Invalid property ID: 465...623. A numeric Property ID is required.
To learn more about Property ID, see
https://developers.google.com/analytics/devguides/reporting/data/vl/property-id.",
"status": "INVALID_ARGUMENT"
}
b

Python Example

install the following packages, google-auth-oauthlib and google-api-python-client for
ease of authentication. You need to obtain a property_key and credentials from google. You
also need to allow the credentials account to read the google analytics data. This is currently
free and no cost is incured. below are the steps how to setup your analytics account, service
account and obtain the credentials file.

Code

%pip install google-auth-oauthlib
Ypip install --upgrade google-api-python-client

from google.oauth2.service_account import Credentials
from googleapiclient.discovery import build

from datetime import datetime, timedelta

from IPython.display import SVG

def get_values(response, searchKey)-> list[str]:
return [

https://pypi.org/project/google-auth-oauthlib/
https://pypi.org/project/google-api-python-client/

value.get('value', None)
for row
in response.get('rows', [])
for key, values
in row.items()
for value
in values
if key == searchKey

def get_views(
page_path: str,
property_key: str,
credentials_filename: str) -> tuplelint, list[strl]:
SCOPES = ['https://www.googleapis.com/auth/analytics.readonly']
credentials = Credentials.from_service_account file(
credentials_filename,
scopes=SCOPES)

analytics = build('analyticsdata', 'vlbeta', credentials = credentials)
tomorrow_date = (datetime.now() + timedelta(days=1)).strftime('%Y-%m-%d")
body = {

"dateRanges": [{
"startDate": "2024-01-01",
"endDate": tomorrow_date

5
"dimensions": [{
"name": "pagePath"
1,
"dimensionFilter": {
"filter": {
"fieldName": "pagePath",
"stringFilter": {
"matchType": "CONTAINS",
"value": page_path
+
X
s
"metrics": [{
"name": "screenPageViews"
]

3

response = analytics.properties() .runReport(

property=property_key,

body=body) .execute ()
metricValues = get_values(response, 'metricValues')
dimensionValues = get_values(response, 'dimensionValues')

metadata = [
f"{dimension} :: {metricl}"
for (dimension, metric)
in zip(dimensionValues, metricValues)

]

return (
sum([int(i or 0) for i in metricValues]),
metadata

)

def generate_badge(label: str, value: str | int, metadata: list[str] = []) -> str:
value_text = f"{value:,}" if isinstance(value, int) else str(value)

Calculate widths

label_width = len(label) * 8 + 10 # Approximate width calculation
value_width = len(value_text) * 8 + 10 # Approximate width calculation
total_width label width + value_width

Generate metadata comments
metadata_comments = "\n ".join(
[f"<!-- METADATA: {item.replace('-->', '->')} -->" for item in metadata])

return f'''<?xml version="1.0" encoding="UTF-8"7>
<svg xmlns="http://www.w3.0rg/2000/svg" width="{total_width}" height="20">
{metadata_comments}
<linearGradient id="b" x2="0" y2="100%">
<stop offset="0" stop-color="#bbb" stop-opacity=".1"/>
<stop offset="1" stop-opacity=".1"/>
</linearGradient>
<mask id="a">
<rect width="{total_width}" height="20" rx="3" fill="#fff"/>
</mask>
<g mask="url (#a)">
<rect width="{label_width}" height="20" fill="#555"/>
<rect x="{label_width}" width="{value_widthl}" height="20" fill="#4c1"/>
<rect width="{total_width}" height="20" fill="url(#b)"/>
</g>

10

<g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans—-serif
<text x="{label_width/2}" y="15" fill="#010101" fill-opacity=".3">{labell}</text>
<text x="{label_width/2}" y="14">{labell}</text>
<text x="{label_width + value_width/2}" y="15" fill="#010101" fill-opacity=".3">{vals
<text x="{label_width + value_width/2}" y="14">{value_text}</text>
</g>
</svg>'''.strip()

def format_number (num: int|float):
nnn
Format a number similar to YouTube's style:
- Less than 1000: show as is (100, 999)
- Thousands: show as K (1K, 1.3K)
- Millions: show as M (1.1M, 2.4M)

Args:
num (int/float): Number to format

Returns:
str: Formatted number string
nnn
abs_num = abs(num)
sign = '-' if num < O else ''

if abs_num < 1000:
return f"{sign}{abs_num:d}"

elif abs_num < 1000000:
formatted = abs_num / 1000
If the decimal part is O, don't show it
if formatted.is_integer():
return f"{sign}{int(formatted)}K"
return f'"{sign}{formatted:.1f}K"

else:
formatted = abs_num / 1000000
if formatted.is_integer():
return f"{sign}{int(formatted)}M"
return f'"{sign}{formatted:.1f}M"

11

Tests

views_count, metadata = get_views(

page_path = "/posts/private-domain-checker",

property_key = "properties/465...623",

credentials_filename = '../../../SERVICE_ACCOUNT_CREDENTIALS.json')
svg_code = generate_badge (

label ="readers",

value = format_number(views_count),

metadata = metadata)

print (svg_code)

<?7xml version="1.0" encoding="UTF-8"7>
<svg xmlns="http://www.w3.0rg/2000/svg" width="92" height="20">

<!-- METADATA: /posts/private-domain-checker/ :: 88 -->

<!-- METADATA: /posts/private-domain-checker/index.html :: 5 -->

<!-- METADATA: /posts/private-domain-checker :: 2 -->

<linearGradient id="b" x2="0" y2="100%">
<stop offset="0" stop-color="#bbb" stop-opacity=".1"/>
<stop offset="1" stop-opacity=".1"/>

</linearGradient>

<mask id="a">
<rect width="92" height="20" rx="3" fill="#fff"/>

</mask>

<g mask="url (#a)">
<rect width="66" height="20" fill="#555"/>
<rect x="66" width="26" height="20" fill="#4cl"/>
<rect width="92" height="20" fill="url(#b)"/>

</g>

<g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,bGeneva,sans-serif
<text x="33.0" y="15" fill="#010101" fill-opacity=".3">readers</text>
<text x="33.0" y="14">readers</text>
<text x="79.0" y="15" fill="#010101" fill-opacity=".3">95</text>
<text x="79.0" y="14">95</text>

</g>

</svg>

SVG(svg_code)

12

views_count, metadata = get_views(
page_path = "/",
property_key = "properties/465...623",

credentials_filename = '../../../SERVICE_ACCOUNT_CREDENTIALS. json')
SVG(generate_badge (
label = "total website views",

value = format_number(views_count),
metadata = metadata))

total website views 1.3K

Below is a live version of the total website views:

https://toknow.ai/pageviews?page path=/&label=total%20website%20views

Using Cloudflare Worker

At the time of this writting, cloudflare workers supports various languages !. However, Python
and Rust are currently in beta. Python packages do not run in production, you can only deploy
Python Workers that use the standard library and a few select packages. That means we cant
use the gogle python packages google-auth-oauthlib and google-api-python-client. We
would have to create the authentication logic from scratch, which adds maintenance burden.
Also for python, only HTTP libraries that are able to make requests asynchronously are
supported. Currently, these include aiohttp and httpx. Also, python is not really a first
class language in a true sense, it still uses webassembly and pyodide: https://blog.cloudflare.
com/python-workers//.

Javascript seems to be the best candidate for a cloudflare worker. And since Typescript is also
supported, its easier to use typescript for type safety and maintentance. Incase the workers
API changes in future, typescript will highlight the areas that are incompatible.

Implementing Typescript Worker

Despite Javascript and Typescript being the best languages to implement the worker, there is
also some limitations. Not all NodeJS packages and environment are supported. As such, we’ll
also need to implement a google authentication from scratch. But fortunately, its easier to
get a third party package compatible with cloudflare, such as https://github.com/Schachte/
cloudflare-google-auth 2. This offsets alot of maintenance. https://github.com/Schachte/

LCloudflare offers first-class support for JavaScript, TypeScript, Python, Rust and WebAssembly. WebAssem-
bly allows one to write Workers using C, C++, Kotlin, Go and more

2https://github.com/Schachte/cloudflare-google-auth and https://ryan-schachte.com/blog/oauth__
cloudflare_ workers/

13

https://toknow.ai/pageviews?page_path=/&label=total%20website%20views
https://developers.cloudflare.com/workers/languages/
https://developers.cloudflare.com/workers/languages/python/packages/#supported-packages
https://blog.cloudflare.com/python-workers/
https://blog.cloudflare.com/python-workers/
https://github.com/Schachte/cloudflare-google-auth
https://github.com/Schachte/cloudflare-google-auth
https://github.com/Schachte/cloudflare-google-auth
https://github.com/Schachte/cloudflare-google-auth
https://developers.cloudflare.com/workers/languages/typescript/
https://developers.cloudflare.com/workers/languages/python/
https://developers.cloudflare.com/workers/languages/rust/
https://developers.cloudflare.com/workers/languages/
https://github.com/Schachte/cloudflare-google-auth
https://ryan-schachte.com/blog/oauth_cloudflare_workers/
https://ryan-schachte.com/blog/oauth_cloudflare_workers/

cloudflare-google-auth seems to be the package with latest mainteinance, but there are other
older and possibly working implementations and online discussions about authenticating and
authorizing google API calls using Service Account credentials > 42678

// https://github.com/ToKnow-ai/display-google-analytics-views-using-cloudflare-worker/blob/
import GoogleAuth, { GoogleKey } from 'cloudflare-workers-and-google-oauth'

// JSON containing the key for the service account

// download from GCS

export interface Env {
SERVICE_ACCOUNT_CREDENTIALS: string;
GA_PROPERTY_ID: string;

const getTomorrowDate = () => {
const tomorrow = new Date();
tomorrow.setDate (tomorrow.getDate() + 1);
return tomorrow.toISOString().split('T') [0];

// Helper function to calculate text width

const getTextWidth = (text: string): number => {
// Approximate character widths (can be adjusted for more accuracy)
const averageCharWidth = 8;
return text.length * averageCharWidth + 10; // Adding padding

};

// Enhanced helper function to generate SVG badge

const generateBadge = (label: string, value: string | number, metadata: string[] = [1) => {
const valueText: string = typeof value === 'number' 7 value.toLocaleString() : value;

// Calculate widths
const labelWidth = getTextWidth(label) ;
const valueWidth = getTextWidth(valueText);

3Node.js helper libraries Google provide don’t work with Cloudflare workers

4() Cloudflare Workers Google OAuth and Implementing Google OAuth to use Google API in Cloudflare
Workers

5Web Auth Library

SExample: Google OAuth 2.0 for Service Accounts using CF Worker

"Converts Google service user OAuth2 credentials into an access token in Cloudflare-compatible JS

8 Allow retrieving an OAuth 2.0 authentication token for interacting with Google services using the service
account key

14

https://community.cloudflare.com/t/validate-google-auth-id-token-on-cf-workers/381293
https://github.com/jazcarate/cloudflare-worker-google-oauth
https://apiumhub.com/tech-blog-barcelona/implementing-google-oauth-google-api-cloudflare-workers/
https://apiumhub.com/tech-blog-barcelona/implementing-google-oauth-google-api-cloudflare-workers/
https://github.com/kriasoft/web-auth-library
https://community.cloudflare.com/t/example-google-oauth-2-0-for-service-accounts-using-cf-worker/258220
https://gist.github.com/markelliot/6627143be1fc8209c9662c504d0ff205
https://gist.github.com/koistya/95776c2e948095906d48d7e7b04aad0b
https://gist.github.com/koistya/95776c2e948095906d48d7e7b04aad0b

const totalWidth = labelWidth + valueWidth;

// Generate metadata comments

const metadataComments = metadata
.map(item => “<!-- METADATA: ${item.replace(/-->/g, '->')} -->7)
.join('\n');

return "<7xml version="1.0" encoding="UTF-8"7>
<svg xmlns="http://www.w3.0rg/2000/svg" width="${totalWidth}" height="20">

${metadataComments}

<linearGradient id="b" x2="0" y2="100%">
<stop offset="0" stop-color="#bbb" stop-opacity=".1"/>
<stop offset="1" stop-opacity=".1"/>

</linearGradient>

<mask id="a">
<rect width="${totalWidth}" height="20" rx="3" fill="#fff"/>

</mask>

<g mask="url(#a)">
<rect width="${labelWidth}" height="20" fill="#555"/>
<rect x="${labelWidth}" width="${valueWidth}" height="20" fill="#4c1"/>
<rect width="${totalWidth}" height="20" fill="url(#b)"/>

</g>

<g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,bGeneva,sans-serif
<text x="${labelWidth/2}" y="15" £ill="#010101" fill-opacity=".3">${label}</text>
<text x="${labelWidth/2}" y="14">${labell}</text>
<text x="${labelWidth + valueWidth/2}" y="15" fill="#010101" fill-opacity=".3">${val
<text x="${labelWidth + valueWidth/2}" y="14">${valueText}</text>

</g>

</svg> .trim();
T3

const formatNumber = (num: number) => {
const isNegative = num < O;
const absNum = Math.abs(num) ;

if (absNum < 1000) {

return ~${isNegative 7 '-' : ''}${Math.trunc(absNum)}";
} else if (absNum < 1000000) {

const formattedNum = absNum / 1000;

return ~${isNegative ? '-' : ''}${formattedNum.toFixed(formattedNum % 1 === 0 7 O :
} else {

const formattedNum = absNum / 1000000;

15

return ~${isNegative ? '-' : ''}${formattedNum.toFixed(formattedNum % 1 === 0 7 O

type Entries<T> = { [K in keyof T]: [K, T[K]]; }[keyof T][];

namespace GoogleAnalyticsReport {
type MetricType = 'TYPE_INTEGER' | 'TYPE_FLOAT' | 'TYPE_STRING';

interface DimensionHeader {
name: string;

3

interface MetricHeader {
name: string;
type: MetricType;

X

export interface DimensionValue {
value: string;

3

export interface MetricValue {
value: string;

}

export interface ReportRow {
dimensionValues: DimensionValuel[];
metricValues: MetricValuel];

3

interface ReportMetadata {
currencyCode: string;
timeZone: string;

}

export interface Report {
dimensionHeaders: DimensionHeader[];
metricHeaders: MetricHeader[];
rows: ReportRowl[];
rowCount: number;
metadata: ReportMetadata;

16

kind: string;
b
b

const getValues = (

analyticsResponse: GoogleAnalyticsReport.Report,

searchKey: keyof GoogleAnalyticsReport.ReportRow) => {

return (analyticsResponse?.['rows'] 7?7 [])
.flatMap(row => Object.entries(row) as Entries<GoogleAnalyticsReport.ReportRow>)
.filter(([key, _1) => key === searchKey)
.flatMap(([_, values]) => values)
.map(value => value?.['value'])

const IMAGE_CACHE_SECONDS = 45 * 60; // Cache for 45 minutes
const GOOGLE_CALL_CACHE_TTL_SECONDS = 45 * 60; // 45 minutes before revalidating the resourc

export default {
async fetch(
request: Request,
env: Env,
ctx: ExecutionContext
) : Promise<Response> {
try {
const cache = caches.default
let response = await cache.match(request)
if (!response) {
if (lenv.SERVICE_ACCOUNT_CREDENTIALS || 'env.GA_PROPERTY_ID) {
throw new Error("No credentials")

}

const scopes: string[] = [
'https://www.googleapis.com/auth/analytics.readonly']

const googleAuth: GoogleKey = JSON.parse(
atob(env.SERVICE_ACCOUNT_CREDENTIALS))

// initialize the service

const oauth = new GoogleAuth(googleAuth, scopes)

const token = await oauth.getGoogleAuthToken ()

if (token === undefined) {
throw new Error('"generating Google auth token failed")

17

// Only allow GET requests
if (request.method !'== 'GET') {

return new Response('Method not allowed', { status: 405 });
}

const getQuery = (queryName) => [
...new URL(request.url).searchParams.entries()].find(
([key, _1) => (key || '').toLowerCase().trim() === queryName)?.[1]
const page_path = getQuery("page_path");
if (!page_path) {
return new Response('page_path not available', { status: 405 });
}
// Construct the request body
const requestBody = {
"dateRanges": [{
"startDate": "2024-01-01",
"endDate": getTomorrowDate ()

1,
"dimensions": [{
"name": "pagePath"
.,
"dimensionFilter": {
"filter": {
"fieldName": "pagePath",
"stringFilter": {
"matchType": "CONTAINS",
"value": page_path.toLowerCase().trim()
}
+
},
"metrics": [{
"name": "screenPageViews"
1]

};

// Make request to Google Analytics API
const analyticsResponse = await fetch(
“https://analyticsdata.googleapis.com/vibeta/${env.GA_PROPERTY_ID}:runRe;
{
method: 'POST',
headers: {
"Authorization': “Bearer ${token}",

18

'Content-Type': 'application/json',

1,

body: JSON.stringify(requestBody),

'cf': {
// Always cache this fetch regardless of content type
// for a max of 45 minutes before revalidating the resource
cacheTtl: GOOGLE_CALL_CACHE_TTL_SECONDS,
cacheEverything: true

X,

3

if (!analyticsResponse.ok) {
return new Response(
JSON.stringify({ error: await analyticsResponse.text() }, null, 4),

{
status: 500,
headers: {
'Content-Type': 'application/json'
}
s

const data = await analyticsResponse.json<GoogleAnalyticsReport.Report>();
const metricValues = getValues(data, 'metricValues');
const dimensionValues = getValues(data, 'dimensionValues');

const viewsCount = metricValues
.map(value => parselnt(value 77 '0'))
.reduce((total, count) => total + count, 0);

// take the first 20 to avoid bloating the image. Sort desc in future..
const metadata = dimensionValues.slice(0, 20).map((value, index) =>
“${value} :: ${metricValues?.[index]?.toLocaleString?.() 77 'NULL'}");

const shorten = getQuery("shorten") || false;
const label = getQuery("label") || "readers";
const badgeSVG = generateBadge (
label,
shorten 7 formatNumber (viewsCount) : viewsCount,
metadata) ;
response = new Response(
badgeSVG,

19

headers:

{
'Content-Type': 'image/svg+xml',
'Cache-Control': “public, max-age=${IMAGE_CACHE_SECONDS}",
"Access-Control-Allow-Origin': 'x*'

+

I3

// Cache API respects Cache-Control headers
ctx.waitUntil (cache.put(request, response.clone()));
}
return response
} catch (error) {
return new Response(
JSON.stringify({
error: error.message || 'Internal server error',
timestamp: new Date() .toISOString()

1,
{
status: 500,
headers: {
'Content-Type': 'application/json'
b
IDE

Testing, Deployment and Troubleshooting Cloudflare Workers

o Workers > Get started

e TypeScript is a first-class language on Cloudflare Workers

o Wrangler

¢ Deploy a real-time chat application

e Create a deploy button with GitHub Actions

o Explore examples of Workers

¢ Examples of how community developers are getting the most out of Workers
o Creating and Deploying a Cloudflare worker with Nodejs (Typescript)

20

https://developers.cloudflare.com/workers/get-started/guide/
https://developers.cloudflare.com/workers/languages/typescript/
https://developers.cloudflare.com/workers/wrangler/
https://developers.cloudflare.com/workers/tutorials/deploy-a-realtime-chat-app/#_top
https://developers.cloudflare.com/workers/tutorials/deploy-button/#_top
https://developers.cloudflare.com/workers/examples/#_top
https://developers.cloudflare.com/developer-spotlight/
https://ishwardatt.medium.com/creating-and-deploying-a-cloudflare-worker-with-nodejs-typescript-bde33963763f

Alternatives to Cloudflare

There exist other serverless services that can offer a better service than cloudflare workers,
such as Azure Functionns from microsoft, Lambda Functions from Amazon Web Services and
Google Cloud Functions from Google. I have extensively worked with Azure Functions for their
simplicity compared to Lambda Functions or Google Cloud Functions. However, Cloudflare
Workers still offer the best developer overall experience, is easier to setup, easier to use the
domain path (example.com/<any/path/can/trigger>) to trigger your worker if your domain
DNS is managed by cloudflare and doesnt require a credit card to signup and start testing &
experimenting. See Table 1

Table 1: Cloudflare Workers from Cloudflare, Azure Functionns from microsoft, Lambda Func-
tions from Amazon Web Services and Google Cloud Functions from Google for a
serverless architecture

AWS

Lambda Google Cloud
Feature Cloudflare Workers Azure Functions Functions Functions
Ease of Very easy - simple Moderate - Moderate - Moderate - requires
Setup web interface and requires Azure requires GCP project setup '?

CLI tools * account setup AWS
and tooling '° account

setup and

TAM config-

uration !

9Workers > Get started

10Getting started with Azure Functions

1 Create your first Lambda function

12Create a Cloud Run function by using the Google Cloud CLI

21

https://developers.cloudflare.com/workers/get-started/guide/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-get-started
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://cloud.google.com/functions/docs/create-deploy-gcloud

AWS

Lambda Google Cloud
Feature Cloudflare Workers Azure Functions Functions Functions
Developer Excellent - fast Good - extensive Good - com- Good - clean interface,
Experi- deployment, good tooling, VS Code prehensive good documentation °
ence documentation, integration 7 tooling, 2122 23
simple testing '3 4 multiple
1516 deployment
options & ¥

13Understand how your Worker projects are performing via logs, traces, and other data sources.
14Send debugging information in an errored response to a logging service.
15Better debugging for Cloudflare Workers, now with breakpoints

6Debug via breakpoints

"Develop Azure Functions by using Visual Studio Code
8Deploying Lambda functions as .zip file archives
19Create a Lambda function using a container image
29Cloud Run functions overview

21Create a Cloud Run function by using the Google Cloud console

22Create a Cloud Run function by using the Google Cloud CLI

23Create a Cloud Run function by using Cloud Code for Cloud Shell

22

https://developers.cloudflare.com/workers/observability/
https://developers.cloudflare.com/workers/examples/debugging-logs/
https://blog.cloudflare.com/debugging-cloudflare-workers/
https://developers.cloudflare.com/workers/observability/dev-tools/breakpoints/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-develop-vs-code
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-zip.html
https://docs.aws.amazon.com/lambda/latest/dg/images-create.html
https://cloud.google.com/functions/docs/concepts/overview
https://cloud.google.com/functions/docs/console-quickstart
https://cloud.google.com/functions/docs/create-deploy-gcloud
https://cloud.google.com/functions/docs/create-deploy-ide

AWS

Lambda Google Cloud
Feature Cloudflare Workers Azure Functions Functions Functions
Pricing Free tier: 100,000 Free tier: 1 Free tier: 1 Free tier: 2 million
requests/day and million requests/- million requests/monthThen
1000 requests/min ~ monthThen requests/- $0.40/million requests
per $0.20/million monthThen 28
accountStandard requests 2° $0.20/mil-
tier: starts at $5 lion requests
USD per month 24 2
25

24Users on the Workers Paid plan have access to the Standard usage model.. The Free tier offers 100,000
requests per day with no charge for duration and 10 milliseconds of CPU time per invocation. The Standard
tier provides 10 million included requests per month, with additional requests costing $0.30 per million.
There’s no charge or limit for duration. The Standard tier includes 30 million CPU milliseconds per month,
with additional milliseconds costing $0.02 per million. Each invocation is limited to 30 seconds of CPU time,
and Cron Triggers or Queue Consumers are limited to 15 minutes per invocation. Inbound requests to your
Worker. Cloudflare does not bill for subrequests you make from your Worker. Requests to static assets are
free and unlimited.

25Workers Paid plan is separate from any other Cloudflare plan (Free, Professional, Business) you may have.
Only requests that hit a Worker will count against your limits and your bill. Since Cloudflare Workers runs
before the Cloudflare cache, the caching of a request still incurs costs

26 Azure Functions offers a spectrum of hosting options to balance cost, control, and features.

1. Consumption Plan:

Traditional serverless model with pay-per-use billing

Includes free grant of 1 million requests and 400,000 GB-s monthly

Scales based on events but lacks VNet support
Maximum 200 instances
No cold start mitigation

2. Flex Consumption Plan:

Enhanced serverless model with more flexibility

Supports VNet integration and always-ready instances

Free grant of 250,000 executions and 100,000 GB-s monthly
Faster scaling with up to 1,000 instances

Multiple memory size options (2,048 MB and 4,096 MB)
Includes both on-demand and always-ready billing modes

3. Premium Plan:

Enhanced performance with no cold starts
Pre-warmed instances and VNet access

Billing based on core seconds and memory allocation
Requires at least one instance always running

Scales up to 100 instances (region dependent)
Available with 1-year or 3-year savings plans

4. Dedicated (App Service) Plan:

23

https://www.cloudflare.com/plans/developer-platform/
https://www.cloudflare.com/plans/developer-platform/
https://developers.cloudflare.com/workers/platform/pricing/#workers
https://developers.cloudflare.com/workers/platform/limits/#subrequests
https://developers.cloudflare.com/workers/platform/pricing/#fine-print
https://developers.cloudflare.com/workers/platform/pricing/#fine-print
https://developers.cloudflare.com/workers/platform/pricing/#fine-print
https://azure.microsoft.com/en-us/pricing/details/functions/
https://learn.microsoft.com/en-us/azure/azure-functions/consumption-plan
https://learn.microsoft.com/en-us/azure/azure-functions/flex-consumption-plan
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan?tabs=portal
https://learn.microsoft.com/en-us/azure/azure-functions/dedicated-plan

AWS

Lambda Google Cloud
Feature Cloudflare Workers Azure Functions Functions Functions
Credit No % Yes 30 Yes 3! Yes 32
Card
Re-
quired

e Runs on dedicated VMs with predictable costs

e Limited to 10-30 instances depending on tier

e No auto-scaling to zero

e Best for utilizing existing App Service resources

e Includes deployment slots and Kudu console access

5. Container Options:

a. Azure Container Apps (Recommended):

e« Managed Kubernetes environment

e Supports scale-to-zero and serverless billing

¢ Includes KEDA, Dapr, and mTLS support

e Up to 1,000 instances

o Workload profiles for dedicated hardware/GPUs

b. Azure Arc-enabled Kubernetes (Preview):

e Run Functions on any Kubernetes cluster
e Managed through Azure
e Supports both code and container deployments

c. Direct Kubernetes:

e Open-source deployment option

e Uses KEDA for event-driven scaling

e Community support model

¢ Requires self-management of containers

See more Feature support comparison and Azure Functions Pricing - 2024 Guide to Azure Functions Costs

& Optimization

2"The AWS Lambda, free tier includes one million free requests per month and 400,000 GB-seconds of compute
time per month, usable for functions powered by both x86, and Graviton2 processors, in aggregate.. Calculate
your AWS Lambda and architecture cost in a single estimate using AWS Pricing Calculator

28Depending on which version of Cloud Run functions you are using, you have two pricing options; Cloud Run
pricing and Cloud Run functions (1st gen) pricing

2%https://dash.cloudflare.com/sign-up/workers-and-pages

30https://azure.microsoft.com/en-us/free/

3Thttps://aws.amazon.com/free/

32https://cloud.google.com /functions?hl=en

24

https://learn.microsoft.com/en-us/azure/azure-functions/container-concepts#container-hosting-options
https://learn.microsoft.com/en-us/azure/azure-functions/functions-container-apps-hosting
https://learn.microsoft.com/en-us/azure/azure-functions/create-first-function-arc-custom-container
https://learn.microsoft.com/en-us/azure/azure-functions/functions-kubernetes-keda
https://learn.microsoft.com/en-us/azure/azure-functions/container-concepts#feature-support-comparison
https://www.anodot.com/blog/azure-functions-pricing/
https://www.anodot.com/blog/azure-functions-pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://calculator.aws/#/createCalculator/Lambda
https://cloud.google.com/functions/pricing-overview
https://cloud.google.com/run/pricing
https://cloud.google.com/run/pricing
https://cloud.google.com/functions/pricing-1stgen
https://dash.cloudflare.com/sign-up/workers-and-pages
https://azure.microsoft.com/en-us/free/
https://aws.amazon.com/free/
https://cloud.google.com/functions?hl=en

AWS

Lambda Google Cloud
Feature Cloudflare Workers Azure Functions Functions Functions
PerformanEecellent - near Good - Good - Good - 100-2000ms
zero cold start, 100-1000ms cold 100-1000ms cold start 43 44
global edge start on average cold start
deployment 33 3* 35 but also supports for less than
36 always ready 1% of
instances 37 3% 39 invocations
40 41 42
Language Limited - Extensive - Extensive - Good - Node.js,
Support JavaScript, Node.js, Python, Node.js, Python, Go, Java,
TypeScript, Rust, Java, NET, Python, NET 8
Python (beta), PowerShell 46 Java, .NET,
WebAssembly 4 Go, Ruby *7

33Cloudflare Account plan limits, Request limits, Response limits, Worker limits(Duration, CPU time), and
Cache API limits. If you are running into limits, your project may be a good fit for Workers for Platforms.
You can also request an adjustment to a limit by complete the Limit Increase Request Form

34Eliminating cold starts with Cloudflare Workers

35Cloudflare Workers has eliminated cold starts entirely, meaning they need zero spin up time. This is the case
in every location in Cloudflare’s global network. In contrast, both Lambda and Lambda@Edge functions
can take over a second to respond from a cold start.

36To solve this famous cold start problem, Cloudflare designed a different approach, and they claim Oms cold
starts all around the world

37 Azure Functions Cold start behavior

38Qur latest work to improve Azure Functions cold starts

39A typical cold start latency spans from 1 to 10 seconds. However, less lucky executions may take up to 30
seconds occasionally. PowerShell functions are especially slow to start with values from 4 to 27 seconds.
View detailed distributions: Cold Start Duration per Language

40The cold start of a Function app in the Consumption plan typically ranges between 1 and 3 seconds

41Comparison of Cold Starts in Serverless Functions across AWS, Azure, and GCP

42Cold starts typically occur in under 1% of invocations. The duration of a cold start varies from under 100 ms
to over 1 second. Provisioned Concurrency can keep your functions initialized and warm, ready to respond
in double-digit milliseconds

43Tn Cloud Run functions (1st gen), the amount of memory granted to a function impacts the CPU allocation,
which in turn can have an impact on cold start time. While this is also true in Cloud Run functions by
default, in Cloud Run functions you have the option of configuring CPU allocation separate from memory.
Latency can also be reduced by setting a minimum number of instances to avoid cold starts

44Comparison of Cold Starts in Serverless Functions across AWS, Azure, and GCP

45Cloudflare offers first-class support for JavaScript, TypeScript, Python, Rust and WebAssembly. WebAssem-
bly allows one to write Workers using C, C++, Kotlin, Go and more

46Supported languages in Azure Functions

4"Ruby, Java, Python, Node.js, .NET

48Cloud Run functions supports multiple language runtimes

25

https://developers.cloudflare.com/workers/platform/limits/
https://developers.cloudflare.com/workers/platform/limits/
https://developers.cloudflare.com/cloudflare-for-platforms/workers-for-platforms/
https://forms.gle/ukpeZVLWLnKeixDu7
https://blog.cloudflare.com/eliminating-cold-starts-with-cloudflare-workers/
https://www.cloudflare.com/learning/serverless/serverless-performance/
https://www.cloudflare.com/learning/serverless/serverless-performance/
https://www.cloudflare.com/learning/serverless/serverless-performance/
https://medium.com/ddosify/cold-start-comparison-of-aws-lambda-and-cloudflare-workers-a3f9021ee60a
https://medium.com/ddosify/cold-start-comparison-of-aws-lambda-and-cloudflare-workers-a3f9021ee60a
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale#cold-start-behavior
https://techcommunity.microsoft.com/blog/appsonazureblog/our-latest-work-to-improve-azure-functions-cold-starts/4164500
https://mikhail.io/serverless/coldstarts/azure/
https://mikhail.io/serverless/coldstarts/azure/languages/
https://community.dynamics.com/blogs/post/?postid=46eed945-74d9-472b-a98e-a6f7c0d09b1c
https://mikhail.io/serverless/coldstarts/big3/
https://docs.aws.amazon.com/lambda/latest/dg/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/dg/execution-environments.html
https://cloud.google.com/functions/docs/concepts/execution-environment#cold-starts
https://cloud.google.com/functions/docs/concepts/execution-environment#cold-starts
https://cloud.google.com/functions/docs/configuring/memory#set-vcpu
https://mikhail.io/serverless/coldstarts/big3/
https://developers.cloudflare.com/workers/languages/javascript/
https://developers.cloudflare.com/workers/languages/typescript/
https://developers.cloudflare.com/workers/languages/python/
https://developers.cloudflare.com/workers/languages/rust/
https://developers.cloudflare.com/workers/languages/
https://learn.microsoft.com/en-us/azure/azure-functions/supported-languages
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://cloud.google.com/functions/docs/concepts/execution-environment#runtimes

AWS

Lambda Google Cloud
Feature Cloudflare Workers Azure Functions Functions Functions
Integratioixcellent with Excellent with Excellent Excellent with Google
with Cloudflare services Azure services °° with AWS services °2Good with
Other “Limited with Good with services °! external services
Services external services external services Good with
external
services
Scalability Automatic, global Automatic, Automatic, Automatic, regional
edge network 3 regional ° regional %°
Security Built-in DDoS Azure Security TAM inte- Cloud TAM
protectionSSL/TLS Center grationKMS integrationSecret
by default °7 58 integrationKey integration Manager 3
Vault integration 69 61 62
59

49Bindings allow your Worker to interact with resources on the Cloudflare Developer Platform.

50 Azure Functions triggers and bindings concepts

51Tnvoking Lambda with events from other AWS services

52 Access Google Cloud APIs from Cloud Run functions by using a service account to act on your behalf. The
service account provides Application Default Credentials for your functions

53Worker limits

54Maximum instances are given on a per-function app (Consumption) or per-plan (Premium/Dedicated) basis,
unless otherwise indicated

55Understanding Lambda function scaling

56 Auto-scaling behavior - Cloud Run functions

5Introducing Automatic SSL/TLS: securing and simplifying origin connectivity

58By default, DDo$S attack protection is always enabled, to customize, create a DDoS override

59Securing Azure Functions

60Security in AWS Lambda

61Data protection in AWS Lambda

62dentity and Access Management for AWS Lambda

63Secure your Cloud Run function. One way to control access to a function is to require that the requesting
entity identify itself by using a credential.. You can also limit access by specifying network settings for
individual functions. This allows for fine-tuned control over the network ingress and egress to and from your
functions.

26

https://developers.cloudflare.com/workers/platform/bindings/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.aws.amazon.com/lambda/latest/dg/lambda-services.html
https://cloud.google.com/functions/docs/concepts/services
https://cloud.google.com/functions/docs/concepts/services
https://developers.cloudflare.com/workers/platform/limits/#worker-limits
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale#scale
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale#scale
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://cloud.google.com/functions/docs/concepts/execution-environment#scaling-behavior
https://blog.cloudflare.com/pt-br/introducing-automatic-ssl-tls-securing-and-simplifying-origin-connectivity/
https://developers.cloudflare.com/ddos-protection/managed-rulesets/http/
https://developers.cloudflare.com/ddos-protection/managed-rulesets/http/configure-dashboard/#create-a-ddos-override
https://learn.microsoft.com/en-us/azure/azure-functions/security-concepts
https://docs.aws.amazon.com/lambda/latest/dg/lambda-security.html
https://docs.aws.amazon.com/lambda/latest/dg/security-dataprotection.html
https://docs.aws.amazon.com/lambda/latest/dg/security-iam.html
https://cloud.google.com/functions/docs/securing
https://cloud.google.com/functions/docs/securing#identity
https://cloud.google.com/functions/docs/securing#identity
https://cloud.google.com/functions/docs/securing#identity
https://cloud.google.com/functions/docs/securing#identity

AWS

Lambda Google Cloud
Feature Cloudflare Workers Azure Functions Functions Functions
Monitoring3asic metrics and Advanced Azure Advanced Advanced Cloud
and logsLimited Monitor CloudWatch Monitoring integration
Logging retention %4 integration % integration 67
66
Custom Native support Requires App Requires Requires domain
Domain with Cloudflare Service domain or API mapping configuration
Support DNSEasy SSL custom domain Gateway or
setup %8 setup 9 custom
domain
setup 70
Key - No filesystem See limits here - Maximum See limits here
Limita- access- No raw deployment
tions TCP or UDP package size
access- Can’t use of 50MB
many Node.js zipped
built-in processes (250MB
and modules like unzipped)-
fs, Node crypto See More
module etc- Other limits here,
technical limits here and
here and here here

There are other options for serverless services such as CloudFront Functions, DigitalOcean
Functions, Oracle Cloud Functions, etc.

64Understand how your Worker projects are performing via logs, traces, and other data sources; DevTools,
FErrors and exceptions, Integrations, Logs, Metrics and analytics and Source maps and stack traces

65Monitor executions in Azure Functions. Azure Functions offers built-in integration with Azure Application
Insights to monitor functions executions

66Monitoring and troubleshooting Lambda functions. Lambda automatically monitors Lambda functions on
your behalf and reports metrics through Amazon CloudWatch

6"Monitor your Cloud Run function. Google Cloud Observability provides logging and monitoring tools that
help you understand what is happening in your functions

68Custom Domains allow you to connect your Worker to a domain or subdomain, without having to make
changes to your DNS settings or perform any certificate management

69Map an existing custom DNS name to Azure App Service. You can use Azure DNS to manage DNS records
for your domain and configure a custom DNS name for Azure App Service, see Tutorial: Host your domain
in Azure DNS

70Custom domain name for public REST APIs in API Gateway. For information about custom domain names
for private APIs, see Custom domain names for private APIs in API Gateway

"IConfigure network settings. Cloud Run functions network settings enable you to control network ingress and
egress to and from individual functions

27

https://developers.cloudflare.com/workers/platform/limits/
https://www.cloudflare.com/plans/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale#service-limits
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://www.micahwalter.com/2024/01/lambda-package-size-limits/
https://aws.amazon.com/lambda/faqs/
https://cloud.google.com/functions/quotas#resource_limits
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cloudfront-functions.html
https://docs.digitalocean.com/products/functions/
https://docs.digitalocean.com/products/functions/
https://www.oracle.com/cloud/cloud-native/functions/
https://developers.cloudflare.com/workers/observability/
https://developers.cloudflare.com/workers/observability/dev-tools/
https://developers.cloudflare.com/workers/observability/errors/
https://developers.cloudflare.com/workers/observability/integrations/
https://developers.cloudflare.com/workers/observability/logs/
https://developers.cloudflare.com/workers/observability/metrics-and-analytics/
https://developers.cloudflare.com/workers/observability/source-maps/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-monitoring
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.aws.amazon.com/lambda/latest/dg/lambda-monitoring.html
https://cloud.google.com/functions/docs/monitoring
https://cloud.google.com/solutions/observability?hl=en
https://developers.cloudflare.com/workers/configuration/routing/custom-domains/
https://learn.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-custom-domain
https://learn.microsoft.com/en-us/azure/dns/dns-delegate-domain-azure-dns
https://learn.microsoft.com/en-us/azure/dns/dns-delegate-domain-azure-dns
https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-custom-domains.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-private-custom-domains.html
https://cloud.google.com/functions/docs/networking/network-settings

Disclaimer: For information only. Accuracy or completeness not guaranteed. Illegal use prohibited. Not professional
advice or solicitation. Read more: /terms-of-service

28

https://toknow.ai/terms-of-service

	Authenticating and Authorizing Google Analytics APIs
	Google APIs Explorer
	Python Example
	Code
	Tests

	Using Cloudflare Worker
	Implementing Typescript Worker
	Testing, Deployment and Troubleshooting Cloudflare Workers

	Alternatives to Cloudflare

