no-same-type-params: An ESLint Rule Against
Silent Argument Swaps

Kabui, Charles

2026-02-17
Table of Contents

The Bug TypeScript Misses o 1
The Rule o o 2
Why “Consecutive”? e e e e e 2
Installation L 2
Configuration 3

ESLint Flat Config (recommended) 3
What It Catches 3
What It Ignores L 4
The Fix: Object Parameters 4
Bonus Tip: Pair with max-params 0. 4

[(9 Read at ToKnoW.ai]

An ESLint rule that catches consecutive function parameters sharing the same type
— the kind of bug TypeScript won’t warn you about.

The Bug TypeScript Misses

TypeScript’s type system will catch a string where a number is expected. But what about
this?

https://toknow.ai/posts/no-same-type-params/index.html

function copyFile(source: string, destination: string, adapterId: string) {
//
}

// Qops - swapped source and destination. TypeScript says nothing.
copyFile(destPath, sourcePath, adapterId);

All three arguments are string. TypeScript is satisfied. The code compiles. The bug ships.

This happens constantly in real codebases. File operations, coordinate systems, API calls —
anywhere you have multiple parameters of the same type, you have a potential silent swap.

The Rule

@mckabue/no-same-type-params warns when two or more consecutive parameters share the
same type annotation:

// Warning: consecutive params 'source' and 'destination' share type 'string'
const copyFile = (source: string, destination: string) => {};

// No warning - object parameter, impossible to swap
const copyFile = ({ source, destination }: CopyParams) => {};

// No warning - different types between same types break the chain
const fn = (a: string, b: number, c: string) => {};
Why “Consecutive”?

The rule only flags consecutive same-type params, not all same-type params anywhere in the
signature. Why?

Non-consecutive params with a different type between them are harder to accidentally swap.
You’d have to skip over a completely different argument, which most editors and reviewers
will catch. Consecutive same-type params are the real danger zone.

Installation

npm install @mckabue/no-same-type-params --save-dev

Configuration

ESLint Flat Config (recommended)

import noSameTypeParams from '@mckabue/no-same-type-params';
import * as tsParser from '@typescript-eslint/parser';

export default [
{
files: ['#*/*.ts', '#*/*.tsx'],
languageOptions: { parser: tsParser },
plugins: {
'@mckabue': {
rules: { 'no-same-type-params': noSameTypeParams },

1,
X,
rules: {

'@mckabue/no-same-type-params': 'warn',
I

},
1;

What It Catches

// Two consecutive strings

const move = (from: string, to: string) => {};

// Three consecutive strings (2 warnings)
function transfer(source: string, dest: string, bucket: string) {}

// Same array types
const merge = (a: string[], b: stringl[]) => {I};

// Same union types
const pick = (a: string | number, b: string | number) => {};

// Default values with same types
const set = (key: string = 'k', value: string = 'v') => {};

What It Ignores
// Different types
const fn = (a: string, b: number) => {};

// 0Object parameter (the recommended fix)
const fn = (opts: { from: string; to: string }) => {I};

// Non-consecutive same types
const fn = (a: string, b: number, c: string) => {};

// Untyped parameters
const fn = (a, b) => {};

// Single parameter

const fn = (a: string) => {};

The Fix: Object Parameters

When the rule warns, the idiomatic fix is almost always an object parameter:

// Before: error-prone
function createUser(name: string, email: string, role: string) {}

// After: self-documenting, impossible to swap
function createUser({ name, email, role }: CreateUserParams) {}
Object parameters are:

¢ Self-documenting at call sites

¢ Order-independent — no swapping risk

o Extensible — add new fields without breaking callers

¢ Grep-friendly — name: is searchable, positional args aren’t

Bonus Tip: Pair with max-params

For maximum effect, combine this rule with ESLint’s built-in max-params rule:

rules: {
'@mckabue/no-same-type-params': 'warn',
'max-params': ['warn', { max: 3 }],

}

Together they form a one-two punch:

o max-params warns when a function has too many parameters (encouraging object params
for complex signatures)

e no-same-type-params warns when consecutive params share the same type (catching
swap risks even in short signatures)

A function with 2 string params triggers no-same-type-params but not max-params. A func-
tion with 4 distinct-type params triggers max-params but not no-same-type-params. Both
push you toward the same idiomatic solution: object parameters.

Install: npm install @mckabue/no-same-type-params --save-dev

GitHub: https://github.com/mckabue/no-same-type-params npm: https://www.npmjs.
com/package/@mckabue/no-same-type-params

Disclaimer: For information only. Accuracy or completeness not guaranteed. Illegal use prohibited. Not professional
advice or solicitation. Read more: /terms-of-service

https://github.com/mckabue/no-same-type-params
https://www.npmjs.com/package/@mckabue/no-same-type-params
https://www.npmjs.com/package/@mckabue/no-same-type-params
https://toknow.ai/terms-of-service

	The Bug TypeScript Misses
	The Rule
	Why ``Consecutive''?
	Installation
	Configuration
	ESLint Flat Config (recommended)

	What It Catches
	What It Ignores
	The Fix: Object Parameters
	Bonus Tip: Pair with max-params

