Optimizing CSS Extraction in Webpack 5

Improving Performance with MiniCssExtractPlugin

Kabui, Charles
2025-04-01

Table of Contents

The Problem: Too Many CSS Files,
The Solution: CSS Splitting Strategies
Making CSS Non-Render Blocking
Controlling CSS Splitting
Basic Approach: Single Bundle (Not Ideal)
Per Entry File Splitting (Limited Control)
Advanced: Splitting by File Location.
Conclusion e
Further Reading

O U W W W NN

[1_9 Read at TOKIIOW.ai]

Webpack 5! has MiniCssExtractPlugin?, a powerful tool for extracting CSS from JavaScript
modules. This optimization serves multiple purposes:

e Improved Performance: By extracting CSS, browsers can cache styles independently
of JavaScript.

o Prevents Flash of Unstyled Content (FOUC): Ensuring styles load before render-
ing reduces layout shifts.

'Webpack 5
2MiniCssExtractPlugin

https://toknow.ai/posts/optimizing-css-extraction-in-webpack-5/index.html
https://web.archive.org/web/20250328090044/https://webpack.js.org/concepts/
https://web.archive.org/web/20250309232135/https://webpack.js.org/plugins/mini-css-extract-plugin/

o Optimized First Content Paint (FCP): Critical styles load faster, improving per-
ceived performance.

¢ Modular CSS Bundling: Different stylesheets can be generated per JavaScript mod-
ule.

A basic implementation looks like this:
const MiniCssExtractPlugin = require("mini-css-extract-plugin");

module.exports = {
plugins: [new MiniCssExtractPlugin()],
module: {
rules: [

{
test: /\.css$/i,
use: [MiniCssExtractPlugin.loader, "css-loader"],

The Problem: Too Many CSS Files

By default, MiniCssExtractPlugin® generates multiple CSS files—one per output chunk,
based on how webpack handles code splitting *. This means each must be manually injected
into the HTML document or handled using a plugin like HtmlWebpackPlugin®.

The Solution: CSS Splitting Strategies

Instead of numerous render-blocking stylesheets, we can:

1. Generate one small critical CSS file (render-blocking)
2. Defer loading of larger stylesheets (non-render-blocking)

3MiniCssExtractPlugin
4GitHub Issue #42: Why Extract CSS?
5HtmlWebpackPlugin

https://web.archive.org/web/20250309232135/https://webpack.js.org/plugins/mini-css-extract-plugin/
https://github.com/webpack-contrib/mini-css-extract-plugin/issues/42
https://web.archive.org/web/20250314225530/https://webpack.js.org/plugins/html-webpack-plugin/

Making CSS Non-Render Blocking
Normally, stylesheets block rendering:

<link rel="stylesheet" href="styles.css" />

To load styles asynchronously, use the media="print" trick:

<link
rel="stylesheet"
href="styles.css"
media="print"
onload="this.media='all""

/>

This prevents blocking while ensuring styles apply once loaded.

Controlling CSS Splitting

Basic Approach: Single Bundle (Not Ideal)

This setup merges all styles into one file, reducing HTTP requests but may make the initial
load slower:

module.exports = {
optimization: {
splitChunks: {
cacheGroups: {

styles: {

name: "styles",

type: "css/mini-extract",
chunks: "all",
enforce: true,

Per Entry File Splitting (Limited Control)

This splits styles based on entry points but lacks fine-grained control:

module.exports = {

entry: {
foo: "./src/foo",
bar: "./src/bar",
},

optimization: {
splitChunks: {
cacheGroups: {
fooStyles: {
type: "css/mini-extract",
name: "styles_foo",
chunks: (chunk) => chunk.name === "foo",
enforce: true,
1,
barStyles: {
type: "css/mini-extract",
name: "styles_bar",
chunks: (chunk) => chunk.name === "bar",
enforce: true,

Advanced: Splitting by File Location

This method separates application styles from third-party vendor styles:

module.exports = {
optimization: {
splitChunks: {
cacheGroups: {
appCss: {
name: "app.css",
chunks: "all",
enforce: true,
test: (module) =>
module.type === "css/mini-extract" &&

Imodule.issuer?.resource?.includes("node modules"),
I
vendorCss: {
name: "vendor.css",
chunks: "all",
enforce: true,
test: (module) =>
module.type === "css/mini-extract" &&
module.issuer?.resource?.includes("node_modules"),

@ Tip

*The key here is module?.issuer?.resource! You can also use module?.resource, but
this is mostly null for webpack chunks.

This could be useful for 6 :

¢ Generating multiple theme-specific bundles.
o Separating vendor styles (Bootstrap, etc.) from application styles.
¢ Ensuring CSS Modules remain scoped correctly.

However, although this works, webpack documentation warns:

“Note that type should be used instead of test in Webpack 5, or else an extra . js
file may be generated besides the .css file.”

Conclusion

Extracting CSS in Webpack 5 is essential for performance optimization. By intelligently split-
ting stylesheets, we can reduce render-blocking requests and improve First Content Paint.

SSupport multiple instances of MiniCssExtractPlugin #45

https://github.com/webpack-contrib/mini-css-extract-plugin/issues/45

Further Reading

o Webpack Mini CSS Extract Plugin - Why Extract CSS? 7
o Handle CSS in Webpack

Disclaimer: For information only. Accuracy or completeness not guaranteed. Illegal use prohibited. Not professional
advice or solicitation. Read more: /terms-of-service

7GitHub Issue #42: Why Extract CSS?

https://stackoverflow.com/a/54123250
https://dev.to/didof/handle-css-in-webpack-extract-css-3i4g
https://toknow.ai/terms-of-service
https://github.com/webpack-contrib/mini-css-extract-plugin/issues/42

	The Problem: Too Many CSS Files
	The Solution: CSS Splitting Strategies
	Making CSS Non-Render Blocking

	Controlling CSS Splitting
	Basic Approach: Single Bundle (Not Ideal)
	Per Entry File Splitting (Limited Control)
	Advanced: Splitting by File Location

	Conclusion
	Further Reading

