
Optimizing CSS Extraction in Webpack 5
Improving Performance with MiniCssExtractPlugin

Kabui, Charles

2025-04-01

Table of Contents

The Problem: Too Many CSS Files . 2
The Solution: CSS Splitting Strategies . 2

Making CSS Non-Render Blocking . 3
Controlling CSS Splitting . 3

Basic Approach: Single Bundle (Not Ideal) 3
Per Entry File Splitting (Limited Control) 4
Advanced: Splitting by File Location 4

Conclusion . 5
Further Reading . 6

Read at ToKnow.ai

Webpack 51 has MiniCssExtractPlugin2, a powerful tool for extracting CSS from JavaScript
modules. This optimization serves multiple purposes:

• Improved Performance: By extracting CSS, browsers can cache styles independently
of JavaScript.

• Prevents Flash of Unstyled Content (FOUC): Ensuring styles load before render-
ing reduces layout shifts.

1Webpack 5
2MiniCssExtractPlugin

1

https://toknow.ai/posts/optimizing-css-extraction-in-webpack-5/index.html
https://web.archive.org/web/20250328090044/https://webpack.js.org/concepts/
https://web.archive.org/web/20250309232135/https://webpack.js.org/plugins/mini-css-extract-plugin/

• Optimized First Content Paint (FCP): Critical styles load faster, improving per-
ceived performance.

• Modular CSS Bundling: Different stylesheets can be generated per JavaScript mod-
ule.

A basic implementation looks like this:

const MiniCssExtractPlugin = require("mini-css-extract-plugin");

module.exports = {
plugins: [new MiniCssExtractPlugin()],
module: {

rules: [
{

test: /\.css$/i,
use: [MiniCssExtractPlugin.loader, "css-loader"],

},
],

},
};

The Problem: Too Many CSS Files

By default, MiniCssExtractPlugin3 generates multiple CSS files—one per output chunk,
based on how webpack handles code splitting 4. This means each must be manually injected
into the HTML document or handled using a plugin like HtmlWebpackPlugin5.

The Solution: CSS Splitting Strategies

Instead of numerous render-blocking stylesheets, we can:

1. Generate one small critical CSS file (render-blocking)
2. Defer loading of larger stylesheets (non-render-blocking)

3MiniCssExtractPlugin
4GitHub Issue #42: Why Extract CSS?
5HtmlWebpackPlugin

2

https://web.archive.org/web/20250309232135/https://webpack.js.org/plugins/mini-css-extract-plugin/
https://github.com/webpack-contrib/mini-css-extract-plugin/issues/42
https://web.archive.org/web/20250314225530/https://webpack.js.org/plugins/html-webpack-plugin/

Making CSS Non-Render Blocking

Normally, stylesheets block rendering:

<link rel="stylesheet" href="styles.css" />

To load styles asynchronously, use the media="print" trick:

<link
rel="stylesheet"
href="styles.css"
media="print"
onload="this.media='all'"

/>

This prevents blocking while ensuring styles apply once loaded.

Controlling CSS Splitting

Basic Approach: Single Bundle (Not Ideal)

This setup merges all styles into one file, reducing HTTP requests but may make the initial
load slower:

module.exports = {
optimization: {

splitChunks: {
cacheGroups: {

styles: {
name: "styles",
type: "css/mini-extract",
chunks: "all",
enforce: true,

},
},

},
},

};

3

Per Entry File Splitting (Limited Control)

This splits styles based on entry points but lacks fine-grained control:

module.exports = {
entry: {

foo: "./src/foo",
bar: "./src/bar",

},
optimization: {

splitChunks: {
cacheGroups: {

fooStyles: {
type: "css/mini-extract",
name: "styles_foo",
chunks: (chunk) => chunk.name === "foo",
enforce: true,

},
barStyles: {

type: "css/mini-extract",
name: "styles_bar",
chunks: (chunk) => chunk.name === "bar",
enforce: true,

},
},

},
},

};

Advanced: Splitting by File Location

This method separates application styles from third-party vendor styles:

module.exports = {
optimization: {

splitChunks: {
cacheGroups: {

appCss: {
name: "app.css",
chunks: "all",
enforce: true,
test: (module) =>

module.type === "css/mini-extract" &&

4

!module.issuer?.resource?.includes("node_modules"),
},
vendorCss: {

name: "vendor.css",
chunks: "all",
enforce: true,
test: (module) =>

module.type === "css/mini-extract" &&
module.issuer?.resource?.includes("node_modules"),

},
},

},
},

};

Tip

*The key here is module?.issuer?.resource! You can also use module?.resource, but
this is mostly null for webpack chunks.

This could be useful for 6 :

• Generating multiple theme-specific bundles.
• Separating vendor styles (Bootstrap, etc.) from application styles.
• Ensuring CSS Modules remain scoped correctly.

However, although this works, webpack documentation warns:

“Note that type should be used instead of test in Webpack 5, or else an extra .js
file may be generated besides the .css file.”

Conclusion

Extracting CSS in Webpack 5 is essential for performance optimization. By intelligently split-
ting stylesheets, we can reduce render-blocking requests and improve First Content Paint.

6Support multiple instances of MiniCssExtractPlugin #45

5

https://github.com/webpack-contrib/mini-css-extract-plugin/issues/45

Further Reading

• Webpack Mini CSS Extract Plugin - Why Extract CSS? 7

• Handle CSS in Webpack

Disclaimer: For information only. Accuracy or completeness not guaranteed. Illegal use prohibited. Not professional
advice or solicitation. Read more: /terms-of-service

7GitHub Issue #42: Why Extract CSS?

6

https://stackoverflow.com/a/54123250
https://dev.to/didof/handle-css-in-webpack-extract-css-3i4g
https://toknow.ai/terms-of-service
https://github.com/webpack-contrib/mini-css-extract-plugin/issues/42

	The Problem: Too Many CSS Files
	The Solution: CSS Splitting Strategies
	Making CSS Non-Render Blocking

	Controlling CSS Splitting
	Basic Approach: Single Bundle (Not Ideal)
	Per Entry File Splitting (Limited Control)
	Advanced: Splitting by File Location

	Conclusion
	Further Reading

