
Progressive Web App (PWA): Introduction
Kabui, Charles

2025-04-23

Table of Contents

What Are Progressive Web Apps (PWAs)? . 3
PWAs vs. Other Cross-Platform Approaches . 3

PWAs vs. React Native . 3
PWAs vs. WebView-Wrapped Websites . 4

Key Capabilities of PWAs . 5
When to Start with a PWA Approach . 5

1. Limited Development Resources . 5
2. Rapid Time-to-Market Requirements . 5
3. Rapid Prototyping and MVPs . 5
4. Content-Centric Applications . 6
5. SEO and Discoverability Priorities . 6
6. Focus on Web Presence . 6
7. Need for Frequent Updates . 6

When PWAs Can Completely Replace Native Apps 6
E-commerce Platforms . 6
Media and Publishing . 7
Online Magazines and News Portals . 7
Business Tools and Enterprise Applications . 7
Service-Based Applications . 7
Basic Productivity Tools . 7
Restaurant Ordering and Menu Apps . 7
Event Information and Ticketing Platforms . 7
Lightweight Social Media Clients . 8

Main Components of a Progressive Web App . 8
Service Workers . 8

Workbox . 8
Web App Manifest . 9

Getting PWAs into App Stores . 9

1

Real-World PWA Success Stories . 10
Twitter Lite . 10
Starbucks . 10
Pinterest . 10
Uber . 10

Limitations and When to Consider Native Apps . 11
Hardware-Intensive Applications . 11
Platform-Specific Features . 11
App Store Presence Limitations . 11

The Future of PWAs . 11
Project Fugu . 11
Desktop PWAs . 11
WebAssembly Integration . 12
Growing Browser Support . 12
PWA-Ready Frameworks . 12

Conclusion: The Pragmatic Approach to Cross-Platform Development 12

Read at ToKnow.ai

Figure 1: Progressive Web App (PWA)

Click to listen to the audio summary

Individuals and businesses face a crucial decision when developing applications: build separate
native apps for each platform or pursue a unified approach? Progressive Web Apps (PWAs)

2

https://toknow.ai/posts/progressive-web-app/introduction/index.html
https://toknow.ai/posts/progressive-web-app/introduction/index.html

promise a “build once, run anywhere” methodology that can reduce development costs
while delivering near‑native experiences. This article explains what PWAs are, their benefits
and challenges, and when to use or avoid them.

What Are Progressive Web Apps (PWAs)?

Progressive Web Apps 1 are normal web applications that use modern web capabilities to
deliver app-like experiences to users. Coined by Google Chrome engineer Alex Russell in 2015
2, PWAs combine the best of web and mobile apps:

• Reliability: Load instantly and function offline through service workers
• Performance: Fast response and smooth animations
• Engagement: Immersive full-screen experiences with push notifications

At their core, PWAs are built with standard web technologies (HTML, CSS, JavaScript) but
leverage advanced APIs and development patterns to function like native applications, essen-
tially bridging the gap between web and native experiences.

Progressive Web Apps follow the principle of progressive enhancement, functioning on basic
browsers while providing enhanced experiences on capable devices. This ensures your applica-
tion reaches the widest possible audience without exclusion.

PWAs vs. Other Cross-Platform Approaches

Before diving deeper into PWAs, it’s important to understand how they differ from other
cross-platform solutions:

PWAs vs. React Native

While both aim to solve the cross-platform development challenge, they differ fundamentally:

• React Native compiles to native code and uses native UI components, resulting in
truly native apps that must be installed through app stores. It uses a JavaScript bridge
to communicate between JS code and native components. From a single codebase, the
developer is able to compile code to target the Web, iOS, and Android.

• PWAs run directly in browsers using web technologies and can be added to home screens,
but they render using web views rather than native UI components. From a single
codebase, the developer only targets the Web, and the web browser is responsible for
rendering the code to target iOS and Android.

1Progressive web apps
2In 2015, designer Frances Berriman and Google Chrome engineer Alex Russell coined the term “progressive

web apps”

3

https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://en.wikipedia.org/wiki/Progressive_web_app#Initial_introduction
https://en.wikipedia.org/wiki/Progressive_web_app#Initial_introduction

Aspect React Native Progressive Web Apps (PWAs)
Build and
Deployment

Requires separate
builds and app store
submissions for each
platform

Single deployment with no app store
approval processes

Performance Typically offers better
native performance for
complex UI
interactions

Relies on web technologies, may have
slightly lower performance

Reach Limited to users who
download the app
from app stores

Broader reach through web
discoverability and instant access

Discoverability App store-dependent,
limited SEO benefits

Discoverable via search engines,
leveraging standard web SEO

User Access Requires installation
from app stores

Accessible instantly via a browser, with
optional home screen installation

PWAs vs. WebView-Wrapped Websites

Some developers create “hybrid apps” by simply wrapping a standard website in a native
WebView container:

• WebView Wrapping takes an existing website and packages it inside a native app
shell using tools like Cordova or Capacitor, with minimal additional native functionality.

• PWAs are specifically designed with app-like features (offline capability, home screen
installation, push notifications) from the ground up.

Aspect WebView-Wrapped Websites Progressive Web Apps (PWAs)
Performance Often suboptimal without

PWA-specific optimizations
Optimized with service workers and
caching

Offline
Functionality

Limited or non-existent Enabled through service workers

App Store
Approval

Required for distribution Not required, accessible directly via
browsers

User
Installation

Mandatory for access Optional, can be added to home
screens

Architecture Standard website wrapped in a
native container

App-shell architecture designed for
speed and reliability

4

https://cordova.apache.org/
https://capacitorjs.com/

Key Capabilities of PWAs

PWAs have evolved dramatically since their introduction. Today’s PWAs can:

• Work offline using service workers and caching strategies
• Install on home screens without app store gatekeeping
• Send push notifications even when the app isn’t active
• Access device hardware including camera, microphone, geolocation, and more
• Function across all modern browsers and devices
• Update automatically in the background without user intervention
• Provide secure experiences via HTTPS
• Adapt to any screen size with responsive design

When to Start with a PWA Approach

1. Limited Development Resources

For startups and small teams with constrained budgets and technical resources, PWAs offer
an efficient entry point. Rather than developing and maintaining separate codebases for iOS,
Android, and web, a PWA allows you to serve all platforms from a single codebase.

2. Rapid Time-to-Market Requirements

When market timing is critical, PWAs enable faster deployment. Native app development
typically requires: - Separate development tracks for each platform - App store approval
processes (often taking days) - User-initiated updates

In contrast, PWAs: - Deploy instantly to all platforms simultaneously - Bypass app store
reviews - Update automatically when users access the application

Basically, any website can be a PWA, including a static website.

3. Rapid Prototyping and MVPs

If you need to quickly validate an idea or launch a Minimum Viable Product with limited
resources, a PWA offers a faster development cycle and broader initial reach compared to
native apps.

In this age of “vibe coding” and using AI to create applications, its faster to create, deploy and
maintain a PWA without alot of developer experience than a native application.

5

https://en.wikipedia.org/wiki/Vibe_coding

4. Content-Centric Applications

Applications where content consumption is the primary activity benefit significantly from
PWAs. News sites, blogs, and documentation platforms can deliver excellent experiences
without native implementation.

5. SEO and Discoverability Priorities

Unlike native apps buried in app stores, PWAs are discoverable through search engines. For
businesses where organic discovery drives significant value, PWAs provide immediate advan-
tages through standard web SEO practices.

Content in PWAs is indexed by search engines, allowing users to discover your application
through search results.

6. Focus on Web Presence

If your core business or service is primarily web-based, extending that experience with app-like
features through a PWA can be a natural and efficient progression.

7. Need for Frequent Updates

PWAs allow for easier and faster updates and deployments compared to the often lengthy
process of releasing new versions on app stores. This facilitates quicker iteration based on user
feedback.

When PWAs Can Completely Replace Native Apps

In several scenarios, PWAs can entirely eliminate the need for native implementations:

E-commerce Platforms

Retail giants like Alibaba and Flipkart have demonstrated that PWAs can deliver conversion
rates comparable to or better than native apps. Alibaba’s PWA increased conversions by 76%
and engagement by 30%, while reducing development resources 3

3Comprehensive Analysis of PWAs in E-commerce for 2025

6

https://wpfrank.com/comprehensive-analysis-of-pwas-in-e-commerce-for-2025/

Media and Publishing

For content-focused businesses, PWAs excel at delivering articles, videos, and interactive media.
The Washington Post’s PWA loads in under a second and has increased reader engagement
by 500% 4.

Online Magazines and News Portals

Delivering articles, videos, and other content with offline access and push notifications makes
PWAs ideal for publishers.

Business Tools and Enterprise Applications

Internal tools, CRM systems, and enterprise applications that don’t require deep hardware
integration can be perfectly served through PWAs, with the added benefit of centralized de-
ployment and instant updates.

Service-Based Applications

Booking services, scheduling applications, and other service-based platforms where the primary
interaction is form submission and information retrieval work exceptionally well as PWAs.

Basic Productivity Tools

Simple note-taking apps, checklists, and calculators that don’t require extensive device hard-
ware interaction are perfect PWA candidates.

Restaurant Ordering and Menu Apps

Allowing users to browse menus, place orders, and receive updates through a web link or home
screen icon.

Event Information and Ticketing Platforms

Providing event details, schedules, maps, and ticket purchasing capabilities without requiring
a dedicated app download.

4Why does The Washington Post’s Progressive Web App increase engagement on iOS?

7

https://cloudfour.com/thinks/why-does-the-washington-posts-progressive-web-app-increase-engagement-on-ios/

Lightweight Social Media Clients

Offering core social networking features without the storage overhead of native apps, as proven
by Twitter Lite.

Main Components of a Progressive Web App

PWAs leverage two main components to deliver their capabilities:

Service Workers

The backbone of PWAs, service workers are JavaScript files that run separately from the main
browser thread, intercepting network requests and enabling: - Offline functionality through
strategic caching - Background syncing when connectivity is restored - Push notifications for
re-engagement

// Simple service worker registration
if ('serviceWorker' in navigator) {
window.addEventListener('load', () => {

navigator.serviceWorker.register('/sw.js')
.then(registration => {
console.log('ServiceWorker registered with scope:', registration.scope);

})
.catch(error => {
console.error('ServiceWorker registration failed:', error);

});
});

}

Workbox

Google’s Workbox library simplifies service worker implementation with ready-made strategies
for caching and offline functionality:

// Using Workbox for cache strategies
importScripts('https://storage.googleapis.com/workbox-cdn/releases/6.2.0/workbox-sw.js');

workbox.routing.registerRoute(
({request}) => request.destination === 'image',
new workbox.strategies.CacheFirst({

cacheName: 'images',

8

https://github.com/GoogleChrome/workbox

plugins: [
new workbox.expiration.ExpirationPlugin({
maxEntries: 50,
maxAgeSeconds: 30 * 24 * 60 * 60, // 30 Days

}),
],

})
);

Web App Manifest

The manifest.json file enables “add to home screen” functionality and controls how the app
appears when launched:

{
"name": "My PWA Application",
"short_name": "MyPWA",
"start_url": "/index.html",
"display": "standalone",
"background_color": "#ffffff",
"theme_color": "#2196f3",
"icons": [

{
"src": "icons/icon-192x192.png",
"sizes": "192x192",
"type": "image/png"

},
{
"src": "icons/icon-512x512.png",
"sizes": "512x512",
"type": "image/png"

}
]

}

Getting PWAs into App Stores

While PWAs are inherently web-based, businesses can still maintain an app store presence by
converting the Progressive Web App into an actual installable app. Developers can manually
convert a PWA into an app through their favourite build tools, and non-developers can use

9

online tools like PWABuilder to generate a full app from just a link to a Progressive Web App.
The generated app is ready to publish to Google Play Store or iOS App Store without
further modifications.

This approach differs from traditional WebView wrapping as it’s specifically optimized for
PWAs, leveraging their existing capabilities rather than simply displaying a website in a native
container.

Real-World PWA Success Stories

Twitter Lite

Twitter’s PWA (mobile.twitter.com) reduced data usage by 70% and increased pages per ses-
sion by 65% 5

Starbucks

The Starbucks PWA is 99.84% smaller (233KB) than their iOS app, yet offers core functionality
including the store locator, menu browsing, and ordering capabilities 6. Their web orders
increased after PWA implementation

Pinterest

After rebuilding as a PWA, Pinterest saw a 60% increase in core engagements and a 44%
increase in user-generated ad revenue. Time spent on the mobile web increased by 40% 7 8

Uber

Uber’s PWA loads in under 3 seconds on 2G networks and provides the core booking experience
in less than 50KB of gzipped code, making it accessible even on low-end devices in emerging
markets 9

5Twitter Lite PWA Significantly Increases Engagement and Reduces Data Usage
6Starbucks ordering and store locator progressive web appStarbucks ordering and store locator progressive

web app
7A Pinterest Progressive Web App Performance Case Study
8Pinterest PWA
9Building m.uber: Engineering a High-Performance Web App for the Global Market

10

https://www.pwabuilder.com/
https://web.dev/case-studies/twitter
https://nearform.com/work/starbucks-progressive-web-app/
https://nearform.com/work/starbucks-progressive-web-app/
https://medium.com/dev-channel/a-pinterest-progressive-web-app-performance-case-study-3bd6ed2e6154
https://www.pwastats.com/2017/12/pinterest/
https://www.uber.com/en-KE/blog/m-uber/

Limitations and When to Consider Native Apps

While PWAs solve many cross-platform challenges, they do have limitations:

Hardware-Intensive Applications

Applications requiring intensive hardware access or low-level system integration may still need
native implementations. This includes: - Advanced AR/VR applications - High-performance
games - Applications requiring specialized hardware access

Platform-Specific Features

Some features remain exclusive to specific platforms or are better implemented natively: -
iOS-specific design patterns and interactions - Deep integration with platform-specific services
- Background processing with complex requirements

App Store Presence Limitations

Some business models rely on app store discovery and monetization. While PWAs can be
listed in Google Play and Microsoft Store using tools like PWABuilder, Apple’s App Store has
more restrictions around web-based applications 10

The Future of PWAs

The PWA ecosystem continues to evolve rapidly:

Project Fugu

Google’s Project Fugu is closing the gap between web and native capabilities by introducing
APIs for: - File system access - Contact picker - Shape detection - Web Bluetooth and USB -
Web NFC - Bluetooth access - Shape detection API and more

Desktop PWAs

Major browsers now support installing PWAs on desktop operating systems, blurring the line
between web and desktop applications. Companies like Microsoft are embracing PWAs for
cross-platform desktop apps.
10Your app should include features, content, and UI that elevate it beyond a repackaged website. If your app

is not particularly useful, unique, or “app-like,” it doesn’t belong on the App Store

11

https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/

WebAssembly Integration

The combination of PWAs with WebAssembly (WASM) enables high-performance computing
directly in the browser, expanding the types of applications that can be delivered as PWAs.
WebAssembly is compilling non-javascript code to run in the browser, such as C# or Go.

Growing Browser Support

Browser vendors continue to expand support for advanced web APIs, gradually eliminating
the few remaining advantages of native applications.

PWA-Ready Frameworks

Most modern JavaScript frameworks offer PWA capabilities built-in or through plugins: -
React with Create React App - Vue with the PWA plugin - Angular with Angular Service
Worker - Next.js with next-pwa

Conclusion: The Pragmatic Approach to Cross-Platform Development

Progressive Web Apps represent a pragmatic solution to the cross-platform development chal-
lenge. While not a universal replacement for native apps in every scenario, PWAs offer com-
pelling advantages:

• Cost efficiency through unified codebases
• Broad accessibility across devices and networks
• Immediate updates without app store approval
• SEO benefits native apps can’t match
• Reduced user friction with no installation requirements
• App store presence

As web capabilities continue to expand and browser support improves, the gap between PWAs
and alternative approaches like React Native or WebView-wrapped sites will continue to nar-
row. For many businesses, starting with a PWA approach and selectively implementing native
components only where necessary represents the most efficient path to reaching users across
the digital ecosystem.

The question is no longer whether to build a PWA, but whether and where you need anything
beyond one. To get a feeling of what PWA can do, you can check out “What PWA Can Do
Today”.

12

https://developer.mozilla.org/en-US/docs/WebAssembly
https://whatpwacando.today/
https://whatpwacando.today/

For completeness sake, let’s consider the following example:

Imagine you’re building a taxi service. You’ll need two separate apps—one for drivers
and one for customers—because the driver’s app has extra responsibilities. It handles
cost calculations, constantly tracks GPS, enforces location access, and guards against
fraud by verifying timestamps and positions. It also has to work reliably across many
device models and operating system versions, which often break or change with updates.
In contrast, the customer app only needs to let people request rides, so it can be a
simple Progressive Web App. That means anyone with an internet‑connected device—no
matter how old or what OS—can book a taxi without requiring them to install or update
a native app. It’s far easier to ask drivers (a small, controlled group) to keep their phones
upgraded than to make every potential rider do the same.

Disclaimer: For information only. Accuracy or completeness not guaranteed. Illegal use prohibited. Not professional
advice or solicitation. Read more: /terms-of-service

13

https://toknow.ai/terms-of-service

	What Are Progressive Web Apps (PWAs)?
	PWAs vs. Other Cross-Platform Approaches
	PWAs vs. React Native
	PWAs vs. WebView-Wrapped Websites

	Key Capabilities of PWAs
	When to Start with a PWA Approach
	1. Limited Development Resources
	2. Rapid Time-to-Market Requirements
	3. Rapid Prototyping and MVPs
	4. Content-Centric Applications
	5. SEO and Discoverability Priorities
	6. Focus on Web Presence
	7. Need for Frequent Updates

	When PWAs Can Completely Replace Native Apps
	E-commerce Platforms
	Media and Publishing
	Online Magazines and News Portals
	Business Tools and Enterprise Applications
	Service-Based Applications
	Basic Productivity Tools
	Restaurant Ordering and Menu Apps
	Event Information and Ticketing Platforms
	Lightweight Social Media Clients

	Main Components of a Progressive Web App
	Service Workers
	Workbox

	Web App Manifest

	Getting PWAs into App Stores
	Real-World PWA Success Stories
	Twitter Lite
	Starbucks
	Pinterest
	Uber

	Limitations and When to Consider Native Apps
	Hardware-Intensive Applications
	Platform-Specific Features
	App Store Presence Limitations

	The Future of PWAs
	Project Fugu
	Desktop PWAs
	WebAssembly Integration
	Growing Browser Support
	PWA-Ready Frameworks

	Conclusion: The Pragmatic Approach to Cross-Platform Development

