
react-use-async: A React Hook for Async
Operations That Doesn’t Overthink It

Kabui, Charles

2026-02-17

Table of Contents

The Pattern . 1
The Hook . 2
Two Variants . 3

useAsync — Execute on Mount . 3
useDelayedAsync — Execute on Demand . 3

Pagination with continueWith . 3
Full Return Type . 4
Why Not Use X? . 4
Installation . 4

Read at ToKnow.ai

A lightweight React hook for managing async operations with loading states, error
handling, and data merging — in under 2KB.

The Pattern

Every React app has this code somewhere:

1

https://toknow.ai/posts/react-use-async/index.html

const [data, setData] = useState(null);
const [loading, setLoading] = useState(true);
const [error, setError] = useState(null);

useEffect(() => {
setLoading(true);
fetchData()

.then(setData)

.catch(setError)

.finally(() => setLoading(false));
}, []);

It’s boilerplate. You write it once, then copy-paste it everywhere with slight variations.
Sometimes you need pagination (merge new data with old). Sometimes you need manual
re-execution. Sometimes you want to wait before executing. Every time, you rewrite the same
loading/error/data dance.

The Hook

useAsync wraps this pattern into a single hook:

import { useAsync } from '@mckabue/react-use-async';

const UserProfile = ({ userId }) => {
const { data, isLoading, error } = useAsync(

() => fetch(`/api/users/${userId}`).then(r => r.json()),
[userId],

);

if (isLoading) return <Spinner />;
if (error) return <Error message={error.message} />;
return <Profile user={data} />;

};

That’s it. Executes on mount, re-executes when userId changes, tracks loading and error
state.

2

Two Variants

useAsync — Execute on Mount

Runs the async function immediately when the component mounts (and on dependency
changes):

const { data, isLoading, error } = useAsync(
() => api.getWorkflows(),
[],

);

useDelayedAsync — Execute on Demand

Same API, but doesn’t run until you call execute:

const { data, isLoading, execute } = useDelayedAsync(
(searchTerm: string) => api.search(searchTerm),
[],

);

// Later, in response to user action:
<button onClick={() => execute('photos')}>Search</button>

Arguments you pass to execute() are forwarded to your async function.

Pagination with continueWith

The hook’s continueWith method appends new data to existing data using a merge function:

const { data, isContinuing, continueWith } = useAsync(
() => api.listItems({ page: 1 }),
[],

);

const loadMore = continueWith(
() => api.listItems({ page: nextPage }),
(existing, newData) => ({

...newData,
items: [...(existing?.items ?? []), ...newData.items],

3

}),
);

return (
<>

{data?.items.map(item => <Item key={item.id} {...item} />)}
<button onClick={loadMore} disabled={isContinuing}>

{isContinuing ? 'Loading...' : 'Load More'}
</button>

</>
);

The isContinuing state is separate from isExecuting, so your initial content stays visible
while more loads.

Full Return Type

{
data: R | null; // Latest resolved value
isExecuting: boolean; // true during execute() calls
isContinuing: boolean; // true during continueWith() calls
isLoading: boolean; // isExecuting || isContinuing
error: Error | null; // Latest error (cleared on next call)
args: A; // Last arguments passed to execute()
execute: (...args) => Promise<void>;
continueWith: (callback, merger) => () => Promise<void>;

}

Why Not Use X?

TanStack Query / SWR: If you need caching, deduplication, background refetching, opti-
mistic updates — use those. They’re excellent.

This hook: If you need loading/error/data for a single async call without a query client
wrapping your app. No providers. No cache keys. No configuration. Just a hook.

Installation

4

npm install @mckabue/react-use-async

Zero dependencies beyond React as a peer dependency. Under 2KB minified.

GitHub: https://github.com/mckabue/react-use-async npm: https://www.npmjs.com/
package/@mckabue/react-use-async

Disclaimer: For information only. Accuracy or completeness not guaranteed. Illegal use prohibited. Not professional
advice or solicitation. Read more: /terms-of-service

5

https://github.com/mckabue/react-use-async
https://www.npmjs.com/package/@mckabue/react-use-async
https://www.npmjs.com/package/@mckabue/react-use-async
https://toknow.ai/terms-of-service

	The Pattern
	The Hook
	Two Variants
	useAsync — Execute on Mount
	useDelayedAsync — Execute on Demand

	Pagination with continueWith
	Full Return Type
	Why Not Use X?
	Installation

