from scipy.optimize import linprog
# Cost coefficients
= [4, 3, 6, 5, 2, 5, 3, 4, 7, 6, 4, 3]
c_transport
= [ # Coefficients for constraints (Supply + Demand)
A_transport 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], # W1 supply
[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0], # W2 supply
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1], # W3 supply
[1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0], # S1 demand
[0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0], # S2 demand
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], # S3 demand
[0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], # S4 demand
[
]
= [250, 300, 400, 200, 200, 250, 300] # Supply & Demand constraints
b_transport = [(0, None)] * 12 # Non-negativity
bounds_transport
= linprog(
res_transport
c_transport, = A_transport[:3],
A_ub = b_transport[:3],
b_ub = A_transport[3:],
A_eq = b_transport[3:],
b_eq = bounds_transport,
bounds ='highs')
method res_transport
message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0
fun: 2850.0
x: [ 5.000e+01 2.000e+02 0.000e+00 0.000e+00 1.500e+02
0.000e+00 1.500e+02 0.000e+00 0.000e+00 0.000e+00
1.000e+02 3.000e+02]
nit: 6
lower: residual: [ 5.000e+01 2.000e+02 0.000e+00 0.000e+00
1.500e+02 0.000e+00 1.500e+02 0.000e+00
0.000e+00 0.000e+00 1.000e+02 3.000e+02]
marginals: [ 0.000e+00 0.000e+00 1.000e+00 1.000e+00
0.000e+00 4.000e+00 0.000e+00 2.000e+00
4.000e+00 4.000e+00 0.000e+00 0.000e+00]
upper: residual: [ inf inf inf inf
inf inf inf inf
inf inf inf inf]
marginals: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00]
eqlin: residual: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00]
marginals: [ 4.000e+00 3.000e+00 5.000e+00 4.000e+00]
ineqlin: residual: [ 0.000e+00 0.000e+00 0.000e+00]
marginals: [-0.000e+00 -2.000e+00 -1.000e+00]
mip_node_count: 0
mip_dual_bound: 0.0
mip_gap: 0.0